initial commit
This commit is contained in:
		
							
								
								
									
										207
									
								
								lib/glm/gtc/bitfield.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										207
									
								
								lib/glm/gtc/bitfield.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,207 @@ | ||||
| /// @ref gtc_bitfield | ||||
| /// @file glm/gtc/bitfield.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_bitfield (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_bitfield GLM_GTC_bitfield | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// @brief Allow to perform bit operations on integer values | ||||
| ///  | ||||
| /// <glm/gtc/bitfield.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/type_int.hpp" | ||||
| #include "../detail/_vectorize.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_bitfield extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_bitfield | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Build a mask of 'count' bits | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType mask(genIUType Bits); | ||||
| 	 | ||||
| 	/// Build a mask of 'count' bits | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename T, precision P, template <typename, precision> class vecIUType> | ||||
| 	GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v); | ||||
|  | ||||
| 	/// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); | ||||
|  | ||||
| 	/// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift); | ||||
|  | ||||
| 	/// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); | ||||
|  | ||||
| 	/// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift); | ||||
|  | ||||
| 	/// Set to 1 a range of bits. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); | ||||
|  | ||||
| 	/// Set to 1 a range of bits. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount); | ||||
|  | ||||
| 	/// Set to 0 a range of bits. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); | ||||
|  | ||||
| 	/// Set to 0 a range of bits. | ||||
| 	/// | ||||
| 	/// @see gtc_bitfield | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x and y. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z. | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y and z.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y and the first bit of z. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y, z and w.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y, z and w.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y, z and w.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); | ||||
|  | ||||
| 	/// Interleaves the bits of x, y, z and w.  | ||||
| 	/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. | ||||
| 	/// The other bits are interleaved following the previous sequence. | ||||
| 	///  | ||||
| 	/// @see gtc_bitfield | ||||
| 	GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "bitfield.inl" | ||||
							
								
								
									
										515
									
								
								lib/glm/gtc/bitfield.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										515
									
								
								lib/glm/gtc/bitfield.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,515 @@ | ||||
| /// @ref gtc_bitfield | ||||
| /// @file glm/gtc/bitfield.inl | ||||
|  | ||||
| #include "../simd/integer.h" | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename PARAM, typename RET> | ||||
| 	GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); | ||||
|  | ||||
| 	template <typename PARAM, typename RET> | ||||
| 	GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); | ||||
|  | ||||
| 	template <typename PARAM, typename RET> | ||||
| 	GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) | ||||
| 	{ | ||||
| 		glm::uint16 REG1(x); | ||||
| 		glm::uint16 REG2(y); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint16(0x0F0F); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint16(0x0F0F); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint16(0x3333); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint16(0x3333); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  1) | REG1) & glm::uint16(0x5555); | ||||
| 		REG2 = ((REG2 <<  1) | REG2) & glm::uint16(0x5555); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) | ||||
| 	{ | ||||
| 		glm::uint32 REG1(x); | ||||
| 		glm::uint32 REG2(y); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0x00FF00FF); | ||||
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0x00FF00FF); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x0F0F0F0F); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x0F0F0F0F); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x33333333); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x33333333); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  1) | REG1) & glm::uint32(0x55555555); | ||||
| 		REG2 = ((REG2 <<  1) | REG2) & glm::uint32(0x55555555); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) | ||||
| 	{ | ||||
| 		glm::uint64 REG1(x); | ||||
| 		glm::uint64 REG2(y); | ||||
|  | ||||
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull); | ||||
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull); | ||||
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333ull); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333ull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555ull); | ||||
| 		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555ull); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) | ||||
| 	{ | ||||
| 		glm::uint32 REG1(x); | ||||
| 		glm::uint32 REG2(y); | ||||
| 		glm::uint32 REG3(z); | ||||
|  | ||||
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); | ||||
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); | ||||
| 		REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0xF00F00F00F00F00F); | ||||
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0xF00F00F00F00F00F); | ||||
| 		REG3 = ((REG3 <<  8) | REG3) & glm::uint32(0xF00F00F00F00F00F); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x30C30C30C30C30C3); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x30C30C30C30C30C3); | ||||
| 		REG3 = ((REG3 <<  4) | REG3) & glm::uint32(0x30C30C30C30C30C3); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x9249249249249249); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x9249249249249249); | ||||
| 		REG3 = ((REG3 <<  2) | REG3) & glm::uint32(0x9249249249249249); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1) | (REG3 << 2); | ||||
| 	} | ||||
| 		 | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) | ||||
| 	{ | ||||
| 		glm::uint64 REG1(x); | ||||
| 		glm::uint64 REG2(y); | ||||
| 		glm::uint64 REG3(z); | ||||
|  | ||||
| 		REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); | ||||
| 		REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); | ||||
| 		REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); | ||||
|  | ||||
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); | ||||
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); | ||||
| 		REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); | ||||
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); | ||||
| 		REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
| 		REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249ull); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249ull); | ||||
| 		REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249ull); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1) | (REG3 << 2); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) | ||||
| 	{ | ||||
| 		glm::uint64 REG1(x); | ||||
| 		glm::uint64 REG2(y); | ||||
| 		glm::uint64 REG3(z); | ||||
|  | ||||
| 		REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); | ||||
| 		REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); | ||||
| 		REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); | ||||
|  | ||||
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); | ||||
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); | ||||
| 		REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); | ||||
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); | ||||
| 		REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
| 		REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249ull); | ||||
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249ull); | ||||
| 		REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249ull); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1) | (REG3 << 2); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) | ||||
| 	{ | ||||
| 		glm::uint32 REG1(x); | ||||
| 		glm::uint32 REG2(y); | ||||
| 		glm::uint32 REG3(z); | ||||
| 		glm::uint32 REG4(w); | ||||
|  | ||||
| 		REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); | ||||
| 		REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); | ||||
| 		REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); | ||||
| 		REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  6) | REG1) & glm::uint32(0x0303030303030303); | ||||
| 		REG2 = ((REG2 <<  6) | REG2) & glm::uint32(0x0303030303030303); | ||||
| 		REG3 = ((REG3 <<  6) | REG3) & glm::uint32(0x0303030303030303); | ||||
| 		REG4 = ((REG4 <<  6) | REG4) & glm::uint32(0x0303030303030303); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  3) | REG1) & glm::uint32(0x1111111111111111); | ||||
| 		REG2 = ((REG2 <<  3) | REG2) & glm::uint32(0x1111111111111111); | ||||
| 		REG3 = ((REG3 <<  3) | REG3) & glm::uint32(0x1111111111111111); | ||||
| 		REG4 = ((REG4 <<  3) | REG4) & glm::uint32(0x1111111111111111); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) | ||||
| 	{ | ||||
| 		glm::uint64 REG1(x); | ||||
| 		glm::uint64 REG2(y); | ||||
| 		glm::uint64 REG3(z); | ||||
| 		glm::uint64 REG4(w); | ||||
|  | ||||
| 		REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull); | ||||
| 		REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull); | ||||
| 		REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull); | ||||
| 		REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull); | ||||
|  | ||||
| 		REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full); | ||||
| 		REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full); | ||||
| 		REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full); | ||||
| 		REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  6) | REG1) & glm::uint64(0x0303030303030303ull); | ||||
| 		REG2 = ((REG2 <<  6) | REG2) & glm::uint64(0x0303030303030303ull); | ||||
| 		REG3 = ((REG3 <<  6) | REG3) & glm::uint64(0x0303030303030303ull); | ||||
| 		REG4 = ((REG4 <<  6) | REG4) & glm::uint64(0x0303030303030303ull); | ||||
|  | ||||
| 		REG1 = ((REG1 <<  3) | REG1) & glm::uint64(0x1111111111111111ull); | ||||
| 		REG2 = ((REG2 <<  3) | REG2) & glm::uint64(0x1111111111111111ull); | ||||
| 		REG3 = ((REG3 <<  3) | REG3) & glm::uint64(0x1111111111111111ull); | ||||
| 		REG4 = ((REG4 <<  3) | REG4) & glm::uint64(0x1111111111111111ull); | ||||
|  | ||||
| 		return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); | ||||
| 	} | ||||
| }//namespace detail | ||||
|  | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); | ||||
|  | ||||
| 		return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecIUType> | ||||
| 	GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); | ||||
|  | ||||
| 		return detail::functor1<T, T, P, vecIUType>::call(mask, v); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genIType> | ||||
| 	GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); | ||||
|  | ||||
| 		int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); | ||||
| 		return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); | ||||
|  | ||||
| 		int const BitSize = static_cast<int>(sizeof(T) * 8); | ||||
| 		return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genIType> | ||||
| 	GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); | ||||
|  | ||||
| 		int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); | ||||
| 		return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); | ||||
|  | ||||
| 		int const BitSize = static_cast<int>(sizeof(T) * 8); | ||||
| 		return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) | ||||
| 	{ | ||||
| 		return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount) | ||||
| 	{ | ||||
| 		return Value | static_cast<T>(mask(BitCount) << FirstBit); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) | ||||
| 	{ | ||||
| 		return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount) | ||||
| 	{ | ||||
| 		return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) | ||||
| 	{ | ||||
| 		union sign8 | ||||
| 		{ | ||||
| 			int8 i; | ||||
| 			uint8 u; | ||||
| 		} sign_x, sign_y; | ||||
|  | ||||
| 		union sign16 | ||||
| 		{ | ||||
| 			int16 i; | ||||
| 			uint16 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint8, uint16>(x, y); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) | ||||
| 	{ | ||||
| 		union sign16 | ||||
| 		{ | ||||
| 			int16 i; | ||||
| 			uint16 u; | ||||
| 		} sign_x, sign_y; | ||||
|  | ||||
| 		union sign32 | ||||
| 		{ | ||||
| 			int32 i; | ||||
| 			uint32 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint16, uint32>(x, y); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) | ||||
| 	{ | ||||
| 		union sign32 | ||||
| 		{ | ||||
| 			int32 i; | ||||
| 			uint32 u; | ||||
| 		} sign_x, sign_y; | ||||
|  | ||||
| 		union sign64 | ||||
| 		{ | ||||
| 			int64 i; | ||||
| 			uint64 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint32, uint64>(x, y); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) | ||||
| 	{ | ||||
| 		union sign8 | ||||
| 		{ | ||||
| 			int8 i; | ||||
| 			uint8 u; | ||||
| 		} sign_x, sign_y, sign_z; | ||||
|  | ||||
| 		union sign32 | ||||
| 		{ | ||||
| 			int32 i; | ||||
| 			uint32 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		sign_z.i = z; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint8, uint32>(x, y, z); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) | ||||
| 	{ | ||||
| 		union sign16 | ||||
| 		{ | ||||
| 			int16 i; | ||||
| 			uint16 u; | ||||
| 		} sign_x, sign_y, sign_z; | ||||
|  | ||||
| 		union sign64 | ||||
| 		{ | ||||
| 			int64 i; | ||||
| 			uint64 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		sign_z.i = z; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint32, uint64>(x, y, z); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) | ||||
| 	{ | ||||
| 		union sign16 | ||||
| 		{ | ||||
| 			int32 i; | ||||
| 			uint32 u; | ||||
| 		} sign_x, sign_y, sign_z; | ||||
|  | ||||
| 		union sign64 | ||||
| 		{ | ||||
| 			int64 i; | ||||
| 			uint64 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		sign_z.i = z; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint32, uint64>(x, y, z); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) | ||||
| 	{ | ||||
| 		union sign8 | ||||
| 		{ | ||||
| 			int8 i; | ||||
| 			uint8 u; | ||||
| 		} sign_x, sign_y, sign_z, sign_w; | ||||
|  | ||||
| 		union sign32 | ||||
| 		{ | ||||
| 			int32 i; | ||||
| 			uint32 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		sign_z.i = z; | ||||
| 		sign_w.i = w; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) | ||||
| 	{ | ||||
| 		union sign16 | ||||
| 		{ | ||||
| 			int16 i; | ||||
| 			uint16 u; | ||||
| 		} sign_x, sign_y, sign_z, sign_w; | ||||
|  | ||||
| 		union sign64 | ||||
| 		{ | ||||
| 			int64 i; | ||||
| 			uint64 u; | ||||
| 		} result; | ||||
|  | ||||
| 		sign_x.i = x; | ||||
| 		sign_y.i = y; | ||||
| 		sign_z.i = z; | ||||
| 		sign_w.i = w; | ||||
| 		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); | ||||
|  | ||||
| 		return result.i; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) | ||||
| 	{ | ||||
| 		return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										65
									
								
								lib/glm/gtc/color_encoding.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								lib/glm/gtc/color_encoding.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,65 @@ | ||||
| /// @ref gtc_color_encoding | ||||
| /// @file glm/gtc/color_encoding.inl | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD65XYZ(tvec3<T, P> const& ColorLinearSRGB) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(0.490f, 0.17697f, 0.2f); | ||||
| 		tvec3<T, P> const N(0.31f,  0.8124f, 0.01063f); | ||||
| 		tvec3<T, P> const O(0.490f, 0.01f, 0.99f); | ||||
|  | ||||
| 		return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast<T>(5.650675255693055f); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToLinearSRGB(tvec3<T, P> const& ColorD65XYZ) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(0.41847f, -0.091169f, 0.0009209f); | ||||
| 		tvec3<T, P> const N(-0.15866f, 0.25243f, 0.015708f); | ||||
| 		tvec3<T, P> const O(0.0009209f, -0.0025498f, 0.1786f); | ||||
|  | ||||
| 		return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD50XYZ(tvec3<T, P> const& ColorLinearSRGB) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); | ||||
| 		tvec3<T, P> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); | ||||
| 		tvec3<T, P> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); | ||||
|  | ||||
| 		return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToLinearSRGB(tvec3<T, P> const& ColorD50XYZ) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(); | ||||
| 		tvec3<T, P> const N(); | ||||
| 		tvec3<T, P> const O(); | ||||
|  | ||||
| 		return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToD50XYZ(tvec3<T, P> const& ColorD65XYZ) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); | ||||
| 		tvec3<T, P> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); | ||||
| 		tvec3<T, P> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); | ||||
|  | ||||
| 		return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToD65XYZ(tvec3<T, P> const& ColorD50XYZ) | ||||
| 	{ | ||||
| 		tvec3<T, P> const M(); | ||||
| 		tvec3<T, P> const N(); | ||||
| 		tvec3<T, P> const O(); | ||||
|  | ||||
| 		return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ; | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										56
									
								
								lib/glm/gtc/color_space.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								lib/glm/gtc/color_space.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,56 @@ | ||||
| /// @ref gtc_color_space | ||||
| /// @file glm/gtc/color_space.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_color_space (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_color_space GLM_GTC_color_space | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Allow to perform bit operations on integer values | ||||
| /// | ||||
| /// <glm/gtc/color.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../exponential.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_color_space extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_color_space | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Convert a linear color to sRGB color using a standard gamma correction. | ||||
| 	/// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear); | ||||
|  | ||||
| 	/// Convert a linear color to sRGB color using a custom gamma correction. | ||||
| 	/// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear, T Gamma); | ||||
|  | ||||
| 	/// Convert a sRGB color to linear color using a standard gamma correction. | ||||
| 	/// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB); | ||||
|  | ||||
| 	/// Convert a sRGB color to linear color using a custom gamma correction. | ||||
| 	// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB, T Gamma); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "color_space.inl" | ||||
							
								
								
									
										75
									
								
								lib/glm/gtc/color_space.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								lib/glm/gtc/color_space.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,75 @@ | ||||
| /// @ref gtc_color_space | ||||
| /// @file glm/gtc/color_space.inl | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	struct compute_rgbToSrgb | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorRGB, T GammaCorrection) | ||||
| 		{ | ||||
| 			vecType<T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1))); | ||||
|  | ||||
| 			return mix( | ||||
| 				pow(ClampedColor, vecType<T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055), | ||||
| 				ClampedColor * static_cast<T>(12.92), | ||||
| 				lessThan(ClampedColor, vecType<T, P>(static_cast<T>(0.0031308)))); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	struct compute_rgbToSrgb<T, P, tvec4> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorRGB, T GammaCorrection) | ||||
| 		{ | ||||
| 			return tvec4<T, P>(compute_rgbToSrgb<T, P, tvec3>::call(tvec3<T, P>(ColorRGB), GammaCorrection), ColorRGB.w); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	struct compute_srgbToRgb | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorSRGB, T Gamma) | ||||
| 		{ | ||||
| 			return mix( | ||||
| 				pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<T, P>(Gamma)), | ||||
| 				ColorSRGB * static_cast<T>(0.07739938080495356037151702786378), | ||||
| 				lessThanEqual(ColorSRGB, vecType<T, P>(static_cast<T>(0.04045)))); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	struct compute_srgbToRgb<T, P, tvec4> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorSRGB, T Gamma) | ||||
| 		{ | ||||
| 			return tvec4<T, P>(compute_srgbToRgb<T, P, tvec3>::call(tvec3<T, P>(ColorSRGB), Gamma), ColorSRGB.w); | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear) | ||||
| 	{ | ||||
| 		return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear, T Gamma) | ||||
| 	{ | ||||
| 		return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB) | ||||
| 	{ | ||||
| 		return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4)); | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB, T Gamma) | ||||
| 	{ | ||||
| 		return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, Gamma); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										176
									
								
								lib/glm/gtc/constants.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								lib/glm/gtc/constants.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| /// @ref gtc_constants | ||||
| /// @file glm/gtc/constants.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_constants GLM_GTC_constants | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// @brief Provide a list of constants and precomputed useful values. | ||||
| ///  | ||||
| /// <glm/gtc/constants.hpp> need to be included to use these features. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_constants extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_constants | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Return the epsilon constant for floating point types. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); | ||||
|  | ||||
| 	/// Return 0. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); | ||||
|  | ||||
| 	/// Return 1. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType one(); | ||||
|  | ||||
| 	/// Return the pi constant. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); | ||||
|  | ||||
| 	/// Return pi * 2. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); | ||||
|  | ||||
| 	/// Return square root of pi. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); | ||||
|  | ||||
| 	/// Return pi / 2. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); | ||||
|  | ||||
| 	/// Return pi / 2 * 3. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); | ||||
|  | ||||
| 	/// Return pi / 4. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); | ||||
|  | ||||
| 	/// Return 1 / pi. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); | ||||
|  | ||||
| 	/// Return 1 / (pi * 2). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); | ||||
|  | ||||
| 	/// Return 2 / pi. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); | ||||
|  | ||||
| 	/// Return 4 / pi. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); | ||||
|  | ||||
| 	/// Return 2 / sqrt(pi). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); | ||||
|  | ||||
| 	/// Return 1 / sqrt(2). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); | ||||
|  | ||||
| 	/// Return sqrt(pi / 2). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); | ||||
|  | ||||
| 	/// Return sqrt(2 * pi). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); | ||||
|  | ||||
| 	/// Return sqrt(ln(4)). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); | ||||
|  | ||||
| 	/// Return e constant. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType e(); | ||||
|  | ||||
| 	/// Return Euler's constant. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); | ||||
|  | ||||
| 	/// Return sqrt(2). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); | ||||
|  | ||||
| 	/// Return sqrt(3). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); | ||||
|  | ||||
| 	/// Return sqrt(5). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); | ||||
|  | ||||
| 	/// Return ln(2). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); | ||||
|  | ||||
| 	/// Return ln(10). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); | ||||
|  | ||||
| 	/// Return ln(ln(2)). | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); | ||||
|  | ||||
| 	/// Return 1 / 3. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType third(); | ||||
|  | ||||
| 	/// Return 2 / 3. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); | ||||
|  | ||||
| 	/// Return the golden ratio constant. | ||||
| 	/// @see gtc_constants | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "constants.inl" | ||||
							
								
								
									
										181
									
								
								lib/glm/gtc/constants.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										181
									
								
								lib/glm/gtc/constants.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,181 @@ | ||||
| /// @ref gtc_constants | ||||
| /// @file glm/gtc/constants.inl | ||||
|  | ||||
| #include <limits> | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() | ||||
| 	{ | ||||
| 		return std::numeric_limits<genType>::epsilon(); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() | ||||
| 	{ | ||||
| 		return genType(0); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() | ||||
| 	{ | ||||
| 		return genType(1); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() | ||||
| 	{ | ||||
| 		return genType(3.14159265358979323846264338327950288); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() | ||||
| 	{ | ||||
| 		return genType(6.28318530717958647692528676655900576); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() | ||||
| 	{ | ||||
| 		return genType(1.772453850905516027); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() | ||||
| 	{ | ||||
| 		return genType(1.57079632679489661923132169163975144); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() | ||||
| 	{ | ||||
| 		return genType(4.71238898038468985769396507491925432);            | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() | ||||
| 	{ | ||||
| 		return genType(0.785398163397448309615660845819875721); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() | ||||
| 	{ | ||||
| 		return genType(0.318309886183790671537767526745028724); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() | ||||
| 	{ | ||||
| 		return genType(0.159154943091895335768883763372514362); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() | ||||
| 	{ | ||||
| 		return genType(0.636619772367581343075535053490057448); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() | ||||
| 	{ | ||||
| 		return genType(1.273239544735162686151070106980114898); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() | ||||
| 	{ | ||||
| 		return genType(1.12837916709551257389615890312154517); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() | ||||
| 	{ | ||||
| 		return genType(0.707106781186547524400844362104849039); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() | ||||
| 	{ | ||||
| 		return genType(1.253314137315500251); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() | ||||
| 	{ | ||||
| 		return genType(2.506628274631000502); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() | ||||
| 	{ | ||||
| 		return genType(1.17741002251547469); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() | ||||
| 	{ | ||||
| 		return genType(2.71828182845904523536); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() | ||||
| 	{ | ||||
| 		return genType(0.577215664901532860606); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() | ||||
| 	{ | ||||
| 		return genType(1.41421356237309504880168872420969808); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() | ||||
| 	{ | ||||
| 		return genType(1.73205080756887729352744634150587236); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() | ||||
| 	{ | ||||
| 		return genType(2.23606797749978969640917366873127623); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() | ||||
| 	{ | ||||
| 		return genType(0.693147180559945309417232121458176568); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() | ||||
| 	{ | ||||
| 		return genType(2.30258509299404568401799145468436421); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() | ||||
| 	{ | ||||
| 		return genType(-0.3665129205816643); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() | ||||
| 	{ | ||||
| 		return genType(0.3333333333333333333333333333333333333333); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() | ||||
| 	{ | ||||
| 		return genType(0.666666666666666666666666666666666666667); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() | ||||
| 	{ | ||||
| 		return genType(1.61803398874989484820458683436563811); | ||||
| 	} | ||||
| } //namespace glm | ||||
							
								
								
									
										73
									
								
								lib/glm/gtc/epsilon.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								lib/glm/gtc/epsilon.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,73 @@ | ||||
| /// @ref gtc_epsilon | ||||
| /// @file glm/gtc/epsilon.hpp | ||||
| ///  | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtc_quaternion (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_epsilon GLM_GTC_epsilon | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// @brief Comparison functions for a user defined epsilon values. | ||||
| ///  | ||||
| /// <glm/gtc/epsilon.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_epsilon extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_epsilon | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Returns the component-wise comparison of |x - y| < epsilon. | ||||
| 	/// True if this expression is satisfied. | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<bool, P> epsilonEqual( | ||||
| 		vecType<T, P> const & x, | ||||
| 		vecType<T, P> const & y, | ||||
| 		T const & epsilon); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of |x - y| < epsilon. | ||||
| 	/// True if this expression is satisfied. | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL bool epsilonEqual( | ||||
| 		genType const & x, | ||||
| 		genType const & y, | ||||
| 		genType const & epsilon); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of |x - y| < epsilon. | ||||
| 	/// True if this expression is not satisfied. | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL typename genType::boolType epsilonNotEqual( | ||||
| 		genType const & x, | ||||
| 		genType const & y, | ||||
| 		typename genType::value_type const & epsilon); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of |x - y| >= epsilon. | ||||
| 	/// True if this expression is not satisfied. | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL bool epsilonNotEqual( | ||||
| 		genType const & x, | ||||
| 		genType const & y, | ||||
| 		genType const & epsilon); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "epsilon.inl" | ||||
							
								
								
									
										125
									
								
								lib/glm/gtc/epsilon.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								lib/glm/gtc/epsilon.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,125 @@ | ||||
| /// @ref gtc_epsilon | ||||
| /// @file glm/gtc/epsilon.inl | ||||
|  | ||||
| // Dependency: | ||||
| #include "quaternion.hpp" | ||||
| #include "../vector_relational.hpp" | ||||
| #include "../common.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER bool epsilonEqual | ||||
| 	( | ||||
| 		float const & x, | ||||
| 		float const & y, | ||||
| 		float const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return abs(x - y) < epsilon; | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER bool epsilonEqual | ||||
| 	( | ||||
| 		double const & x, | ||||
| 		double const & y, | ||||
| 		double const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return abs(x - y) < epsilon; | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER bool epsilonNotEqual | ||||
| 	( | ||||
| 		float const & x, | ||||
| 		float const & y, | ||||
| 		float const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return abs(x - y) >= epsilon; | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER bool epsilonNotEqual | ||||
| 	( | ||||
| 		double const & x, | ||||
| 		double const & y, | ||||
| 		double const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return abs(x - y) >= epsilon; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual | ||||
| 	( | ||||
| 		vecType<T, P> const & x, | ||||
| 		vecType<T, P> const & y, | ||||
| 		T const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return lessThan(abs(x - y), vecType<T, P>(epsilon)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual | ||||
| 	( | ||||
| 		vecType<T, P> const & x, | ||||
| 		vecType<T, P> const & y, | ||||
| 		vecType<T, P> const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return lessThan(abs(x - y), vecType<T, P>(epsilon)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual | ||||
| 	( | ||||
| 		vecType<T, P> const & x, | ||||
| 		vecType<T, P> const & y, | ||||
| 		T const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual | ||||
| 	( | ||||
| 		vecType<T, P> const & x, | ||||
| 		vecType<T, P> const & y, | ||||
| 		vecType<T, P> const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonEqual | ||||
| 	( | ||||
| 		tquat<T, P> const & x, | ||||
| 		tquat<T, P> const & y, | ||||
| 		T const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); | ||||
| 		return lessThan(abs(v), tvec4<T, P>(epsilon)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonNotEqual | ||||
| 	( | ||||
| 		tquat<T, P> const & x, | ||||
| 		tquat<T, P> const & y, | ||||
| 		T const & epsilon | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); | ||||
| 		return greaterThanEqual(abs(v), tvec4<T, P>(epsilon)); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										53
									
								
								lib/glm/gtc/functions.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								lib/glm/gtc/functions.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,53 @@ | ||||
| /// @ref gtc_functions | ||||
| /// @file glm/gtc/functions.hpp | ||||
| ///  | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtc_quaternion (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_functions GLM_GTC_functions | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// @brief List of useful common functions. | ||||
| ///  | ||||
| /// <glm/gtc/functions.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/type_vec2.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_functions extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_functions | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// 1D gauss function | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL T gauss( | ||||
| 		T x, | ||||
| 		T ExpectedValue, | ||||
| 		T StandardDeviation); | ||||
|  | ||||
| 	/// 2D gauss function | ||||
| 	/// | ||||
| 	/// @see gtc_epsilon | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T gauss( | ||||
| 		tvec2<T, P> const& Coord, | ||||
| 		tvec2<T, P> const& ExpectedValue, | ||||
| 		tvec2<T, P> const& StandardDeviation); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "functions.inl" | ||||
|  | ||||
							
								
								
									
										31
									
								
								lib/glm/gtc/functions.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								lib/glm/gtc/functions.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,31 @@ | ||||
| /// @ref gtc_functions | ||||
| /// @file glm/gtc/functions.inl | ||||
|  | ||||
| #include "../detail/func_exponential.hpp" | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER T gauss | ||||
| 	( | ||||
| 		T x, | ||||
| 		T ExpectedValue, | ||||
| 		T StandardDeviation | ||||
| 	) | ||||
| 	{ | ||||
| 		return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T gauss | ||||
| 	( | ||||
| 		tvec2<T, P> const& Coord, | ||||
| 		tvec2<T, P> const& ExpectedValue, | ||||
| 		tvec2<T, P> const& StandardDeviation | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec2<T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation); | ||||
| 		return exp(-(Squared.x + Squared.y)); | ||||
| 	} | ||||
| }//namespace glm | ||||
|  | ||||
							
								
								
									
										102
									
								
								lib/glm/gtc/integer.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								lib/glm/gtc/integer.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | ||||
| /// @ref gtc_integer | ||||
| /// @file glm/gtc/integer.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_integer (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_integer GLM_GTC_integer | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Allow to perform bit operations on integer values | ||||
| /// | ||||
| /// <glm/gtc/integer.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/func_common.hpp" | ||||
| #include "../detail/func_integer.hpp" | ||||
| #include "../detail/func_exponential.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_integer extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_integer | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size. | ||||
| 	/// @see gtc_integer | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType log2(genIUType x); | ||||
|  | ||||
| 	/// Modulus. Returns x % y | ||||
| 	/// for each component in x using the floating point value y. | ||||
| 	/// | ||||
| 	/// @tparam genIUType Integer-point scalar or vector types. | ||||
| 	/// | ||||
| 	/// @see gtc_integer | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y); | ||||
|  | ||||
| 	/// Modulus. Returns x % y | ||||
| 	/// for each component in x using the floating point value y. | ||||
| 	/// | ||||
| 	/// @tparam T Integer scalar types. | ||||
| 	/// @tparam vecType vector types. | ||||
| 	/// | ||||
| 	/// @see gtc_integer | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y); | ||||
|  | ||||
| 	/// Modulus. Returns x % y | ||||
| 	/// for each component in x using the floating point value y. | ||||
| 	/// | ||||
| 	/// @tparam T Integer scalar types. | ||||
| 	/// @tparam vecType vector types. | ||||
| 	/// | ||||
| 	/// @see gtc_integer | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y); | ||||
|  | ||||
| 	/// Returns a value equal to the nearest integer to x. | ||||
| 	/// The fraction 0.5 will round in a direction chosen by the | ||||
| 	/// implementation, presumably the direction that is fastest. | ||||
| 	///  | ||||
| 	/// @param x The values of the argument must be greater or equal to zero. | ||||
| 	/// @tparam T floating point scalar types. | ||||
| 	/// @tparam vecType vector types. | ||||
| 	///  | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> | ||||
| 	/// @see gtc_integer | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<int, P> iround(vecType<T, P> const & x); | ||||
|  | ||||
| 	/// Returns a value equal to the nearest integer to x. | ||||
| 	/// The fraction 0.5 will round in a direction chosen by the | ||||
| 	/// implementation, presumably the direction that is fastest. | ||||
| 	///  | ||||
| 	/// @param x The values of the argument must be greater or equal to zero. | ||||
| 	/// @tparam T floating point scalar types. | ||||
| 	/// @tparam vecType vector types. | ||||
| 	///  | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> | ||||
| 	/// @see gtc_integer | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<uint, P> uround(vecType<T, P> const & x); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "integer.inl" | ||||
							
								
								
									
										71
									
								
								lib/glm/gtc/integer.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								lib/glm/gtc/integer.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| /// @ref gtc_integer | ||||
| /// @file glm/gtc/integer.inl | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> | ||||
| 	struct compute_log2<T, P, vecType, false, Aligned> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec) | ||||
| 		{ | ||||
| 			//Equivalent to return findMSB(vec); but save one function call in ASM with VC | ||||
| 			//return findMSB(vec); | ||||
| 			return vecType<T, P>(detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(vec)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| #	if GLM_HAS_BITSCAN_WINDOWS | ||||
| 		template <precision P, bool Aligned> | ||||
| 		struct compute_log2<int, P, tvec4, false, Aligned> | ||||
| 		{ | ||||
| 			GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & vec) | ||||
| 			{ | ||||
| 				tvec4<int, P> Result(glm::uninitialize); | ||||
|  | ||||
| 				_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), vec.x); | ||||
| 				_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), vec.y); | ||||
| 				_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), vec.z); | ||||
| 				_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), vec.w); | ||||
|  | ||||
| 				return Result; | ||||
| 			} | ||||
| 		}; | ||||
| #	endif//GLM_HAS_BITSCAN_WINDOWS | ||||
| }//namespace detail | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER int iround(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs"); | ||||
| 		assert(static_cast<genType>(0.0) <= x); | ||||
|  | ||||
| 		return static_cast<int>(x + static_cast<genType>(0.5)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<int, P> iround(vecType<T, P> const& x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs"); | ||||
| 		assert(all(lessThanEqual(vecType<T, P>(0), x))); | ||||
|  | ||||
| 		return vecType<int, P>(x + static_cast<T>(0.5)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER uint uround(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs"); | ||||
| 		assert(static_cast<genType>(0.0) <= x); | ||||
|  | ||||
| 		return static_cast<uint>(x + static_cast<genType>(0.5)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<uint, P> uround(vecType<T, P> const& x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs"); | ||||
| 		assert(all(lessThanEqual(vecType<T, P>(0), x))); | ||||
|  | ||||
| 		return vecType<uint, P>(x + static_cast<T>(0.5)); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										59
									
								
								lib/glm/gtc/matrix_access.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								lib/glm/gtc/matrix_access.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,59 @@ | ||||
| /// @ref gtc_matrix_access | ||||
| /// @file glm/gtc/matrix_access.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_matrix_access GLM_GTC_matrix_access | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// Defines functions to access rows or columns of a matrix easily. | ||||
| /// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../detail/setup.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_matrix_access extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_matrix_access | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Get a specific row of a matrix. | ||||
| 	/// @see gtc_matrix_access | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL typename genType::row_type row( | ||||
| 		genType const & m, | ||||
| 		length_t index); | ||||
|  | ||||
| 	/// Set a specific row to a matrix. | ||||
| 	/// @see gtc_matrix_access | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType row( | ||||
| 		genType const & m, | ||||
| 		length_t index, | ||||
| 		typename genType::row_type const & x); | ||||
|  | ||||
| 	/// Get a specific column of a matrix. | ||||
| 	/// @see gtc_matrix_access | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL typename genType::col_type column( | ||||
| 		genType const & m, | ||||
| 		length_t index); | ||||
|  | ||||
| 	/// Set a specific column to a matrix. | ||||
| 	/// @see gtc_matrix_access | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType column( | ||||
| 		genType const & m, | ||||
| 		length_t index, | ||||
| 		typename genType::col_type const & x); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "matrix_access.inl" | ||||
							
								
								
									
										63
									
								
								lib/glm/gtc/matrix_access.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								lib/glm/gtc/matrix_access.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,63 @@ | ||||
| /// @ref gtc_matrix_access | ||||
| /// @file glm/gtc/matrix_access.inl | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType row | ||||
| 	( | ||||
| 		genType const & m, | ||||
| 		length_t index, | ||||
| 		typename genType::row_type const & x | ||||
| 	) | ||||
| 	{ | ||||
| 		assert(index >= 0 && index < m[0].length()); | ||||
|  | ||||
| 		genType Result = m; | ||||
| 		for(length_t i = 0; i < m.length(); ++i) | ||||
| 			Result[i][index] = x[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER typename genType::row_type row | ||||
| 	( | ||||
| 		genType const & m, | ||||
| 		length_t index | ||||
| 	) | ||||
| 	{ | ||||
| 		assert(index >= 0 && index < m[0].length()); | ||||
|  | ||||
| 		typename genType::row_type Result; | ||||
| 		for(length_t i = 0; i < m.length(); ++i) | ||||
| 			Result[i] = m[i][index]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType column | ||||
| 	( | ||||
| 		genType const & m, | ||||
| 		length_t index, | ||||
| 		typename genType::col_type const & x | ||||
| 	) | ||||
| 	{ | ||||
| 		assert(index >= 0 && index < m.length()); | ||||
|  | ||||
| 		genType Result = m; | ||||
| 		Result[index] = x; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER typename genType::col_type column | ||||
| 	( | ||||
| 		genType const & m, | ||||
| 		length_t index | ||||
| 	) | ||||
| 	{ | ||||
| 		assert(index >= 0 && index < m.length()); | ||||
|  | ||||
| 		return m[index]; | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										486
									
								
								lib/glm/gtc/matrix_integer.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										486
									
								
								lib/glm/gtc/matrix_integer.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,486 @@ | ||||
| /// @ref gtc_matrix_integer | ||||
| /// @file glm/gtc/matrix_integer.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// Defines a number of matrices with integer types. | ||||
| /// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../mat2x2.hpp" | ||||
| #include "../mat2x3.hpp" | ||||
| #include "../mat2x4.hpp" | ||||
| #include "../mat3x2.hpp" | ||||
| #include "../mat3x3.hpp" | ||||
| #include "../mat3x4.hpp" | ||||
| #include "../mat4x2.hpp" | ||||
| #include "../mat4x3.hpp" | ||||
| #include "../mat4x4.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_matrix_integer extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_matrix_integer | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// High-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, highp>				highp_imat2; | ||||
|  | ||||
| 	/// High-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, highp>				highp_imat3; | ||||
|  | ||||
| 	/// High-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, highp>				highp_imat4; | ||||
|  | ||||
| 	/// High-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, highp>				highp_imat2x2; | ||||
|  | ||||
| 	/// High-precision signed integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<int, highp>				highp_imat2x3; | ||||
|  | ||||
| 	/// High-precision signed integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<int, highp>				highp_imat2x4; | ||||
|  | ||||
| 	/// High-precision signed integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<int, highp>				highp_imat3x2; | ||||
|  | ||||
| 	/// High-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, highp>				highp_imat3x3; | ||||
|  | ||||
| 	/// High-precision signed integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<int, highp>				highp_imat3x4; | ||||
|  | ||||
| 	/// High-precision signed integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<int, highp>				highp_imat4x2; | ||||
|  | ||||
| 	/// High-precision signed integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<int, highp>				highp_imat4x3; | ||||
|  | ||||
| 	/// High-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, highp>				highp_imat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Medium-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, mediump>			mediump_imat2; | ||||
|  | ||||
| 	/// Medium-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, mediump>			mediump_imat3; | ||||
|  | ||||
| 	/// Medium-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, mediump>			mediump_imat4; | ||||
|  | ||||
|  | ||||
| 	/// Medium-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, mediump>			mediump_imat2x2; | ||||
|  | ||||
| 	/// Medium-precision signed integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<int, mediump>			mediump_imat2x3; | ||||
|  | ||||
| 	/// Medium-precision signed integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<int, mediump>			mediump_imat2x4; | ||||
|  | ||||
| 	/// Medium-precision signed integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<int, mediump>			mediump_imat3x2; | ||||
|  | ||||
| 	/// Medium-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, mediump>			mediump_imat3x3; | ||||
|  | ||||
| 	/// Medium-precision signed integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<int, mediump>			mediump_imat3x4; | ||||
|  | ||||
| 	/// Medium-precision signed integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<int, mediump>			mediump_imat4x2; | ||||
|  | ||||
| 	/// Medium-precision signed integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<int, mediump>			mediump_imat4x3; | ||||
|  | ||||
| 	/// Medium-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, mediump>			mediump_imat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Low-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, lowp>				lowp_imat2; | ||||
| 	 | ||||
| 	/// Low-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, lowp>				lowp_imat3; | ||||
|  | ||||
| 	/// Low-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, lowp>				lowp_imat4; | ||||
|  | ||||
|  | ||||
| 	/// Low-precision signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<int, lowp>				lowp_imat2x2; | ||||
|  | ||||
| 	/// Low-precision signed integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<int, lowp>				lowp_imat2x3; | ||||
|  | ||||
| 	/// Low-precision signed integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<int, lowp>				lowp_imat2x4; | ||||
|  | ||||
| 	/// Low-precision signed integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<int, lowp>				lowp_imat3x2; | ||||
|  | ||||
| 	/// Low-precision signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<int, lowp>				lowp_imat3x3; | ||||
|  | ||||
| 	/// Low-precision signed integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<int, lowp>				lowp_imat3x4; | ||||
|  | ||||
| 	/// Low-precision signed integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<int, lowp>				lowp_imat4x2; | ||||
|  | ||||
| 	/// Low-precision signed integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<int, lowp>				lowp_imat4x3; | ||||
|  | ||||
| 	/// Low-precision signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<int, lowp>				lowp_imat4x4; | ||||
|  | ||||
|  | ||||
| 	/// High-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, highp>				highp_umat2;	 | ||||
|  | ||||
| 	/// High-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, highp>				highp_umat3; | ||||
|  | ||||
| 	/// High-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, highp>				highp_umat4; | ||||
|  | ||||
| 	/// High-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, highp>				highp_umat2x2; | ||||
|  | ||||
| 	/// High-precision unsigned integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<uint, highp>				highp_umat2x3; | ||||
|  | ||||
| 	/// High-precision unsigned integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<uint, highp>				highp_umat2x4; | ||||
|  | ||||
| 	/// High-precision unsigned integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<uint, highp>				highp_umat3x2; | ||||
|  | ||||
| 	/// High-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, highp>				highp_umat3x3; | ||||
|  | ||||
| 	/// High-precision unsigned integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<uint, highp>				highp_umat3x4; | ||||
|  | ||||
| 	/// High-precision unsigned integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<uint, highp>				highp_umat4x2; | ||||
|  | ||||
| 	/// High-precision unsigned integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<uint, highp>				highp_umat4x3; | ||||
|  | ||||
| 	/// High-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, highp>				highp_umat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, mediump>			mediump_umat2; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, mediump>			mediump_umat3; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, mediump>			mediump_umat4; | ||||
|  | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, mediump>			mediump_umat2x2; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<uint, mediump>			mediump_umat2x3; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<uint, mediump>			mediump_umat2x4; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<uint, mediump>			mediump_umat3x2; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, mediump>			mediump_umat3x3; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<uint, mediump>			mediump_umat3x4; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<uint, mediump>			mediump_umat4x2; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<uint, mediump>			mediump_umat4x3; | ||||
|  | ||||
| 	/// Medium-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, mediump>			mediump_umat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Low-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, lowp>				lowp_umat2; | ||||
| 	 | ||||
| 	/// Low-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, lowp>				lowp_umat3; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, lowp>				lowp_umat4; | ||||
|  | ||||
|  | ||||
| 	/// Low-precision unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x2<uint, lowp>				lowp_umat2x2; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x3<uint, lowp>				lowp_umat2x3; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat2x4<uint, lowp>				lowp_umat2x4; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x2<uint, lowp>				lowp_umat3x2; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x3<uint, lowp>				lowp_umat3x3; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat3x4<uint, lowp>				lowp_umat3x4; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x2<uint, lowp>				lowp_umat4x2; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x3<uint, lowp>				lowp_umat4x3; | ||||
|  | ||||
| 	/// Low-precision unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef tmat4x4<uint, lowp>				lowp_umat4x4; | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_INT)) | ||||
| 	typedef highp_imat2								imat2; | ||||
| 	typedef highp_imat3								imat3; | ||||
| 	typedef highp_imat4								imat4; | ||||
| 	typedef highp_imat2x2							imat2x2; | ||||
| 	typedef highp_imat2x3							imat2x3; | ||||
| 	typedef highp_imat2x4							imat2x4; | ||||
| 	typedef highp_imat3x2							imat3x2; | ||||
| 	typedef highp_imat3x3							imat3x3; | ||||
| 	typedef highp_imat3x4							imat3x4; | ||||
| 	typedef highp_imat4x2							imat4x2; | ||||
| 	typedef highp_imat4x3							imat4x3; | ||||
| 	typedef highp_imat4x4							imat4x4; | ||||
| #elif(defined(GLM_PRECISION_LOWP_INT)) | ||||
| 	typedef lowp_imat2								imat2; | ||||
| 	typedef lowp_imat3								imat3; | ||||
| 	typedef lowp_imat4								imat4; | ||||
| 	typedef lowp_imat2x2							imat2x2; | ||||
| 	typedef lowp_imat2x3							imat2x3; | ||||
| 	typedef lowp_imat2x4							imat2x4; | ||||
| 	typedef lowp_imat3x2							imat3x2; | ||||
| 	typedef lowp_imat3x3							imat3x3; | ||||
| 	typedef lowp_imat3x4							imat3x4; | ||||
| 	typedef lowp_imat4x2							imat4x2; | ||||
| 	typedef lowp_imat4x3							imat4x3; | ||||
| 	typedef lowp_imat4x4							imat4x4; | ||||
| #else //if(defined(GLM_PRECISION_MEDIUMP_INT)) | ||||
|  | ||||
| 	/// Signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat2							imat2; | ||||
|  | ||||
| 	/// Signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat3							imat3; | ||||
|  | ||||
| 	/// Signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat4							imat4; | ||||
|  | ||||
| 	/// Signed integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat2x2							imat2x2; | ||||
|  | ||||
| 	/// Signed integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat2x3							imat2x3; | ||||
|  | ||||
| 	/// Signed integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat2x4							imat2x4; | ||||
|  | ||||
| 	/// Signed integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat3x2							imat3x2; | ||||
|  | ||||
| 	/// Signed integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat3x3							imat3x3; | ||||
|  | ||||
| 	/// Signed integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat3x4							imat3x4; | ||||
|  | ||||
| 	/// Signed integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat4x2							imat4x2; | ||||
|  | ||||
| 	/// Signed integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat4x3							imat4x3; | ||||
|  | ||||
| 	/// Signed integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_imat4x4							imat4x4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_UINT)) | ||||
| 	typedef highp_umat2								umat2; | ||||
| 	typedef highp_umat3								umat3; | ||||
| 	typedef highp_umat4								umat4; | ||||
| 	typedef highp_umat2x2							umat2x2; | ||||
| 	typedef highp_umat2x3							umat2x3; | ||||
| 	typedef highp_umat2x4							umat2x4; | ||||
| 	typedef highp_umat3x2							umat3x2; | ||||
| 	typedef highp_umat3x3							umat3x3; | ||||
| 	typedef highp_umat3x4							umat3x4; | ||||
| 	typedef highp_umat4x2							umat4x2; | ||||
| 	typedef highp_umat4x3							umat4x3; | ||||
| 	typedef highp_umat4x4							umat4x4; | ||||
| #elif(defined(GLM_PRECISION_LOWP_UINT)) | ||||
| 	typedef lowp_umat2								umat2; | ||||
| 	typedef lowp_umat3								umat3; | ||||
| 	typedef lowp_umat4								umat4; | ||||
| 	typedef lowp_umat2x2							umat2x2; | ||||
| 	typedef lowp_umat2x3							umat2x3; | ||||
| 	typedef lowp_umat2x4							umat2x4; | ||||
| 	typedef lowp_umat3x2							umat3x2; | ||||
| 	typedef lowp_umat3x3							umat3x3; | ||||
| 	typedef lowp_umat3x4							umat3x4; | ||||
| 	typedef lowp_umat4x2							umat4x2; | ||||
| 	typedef lowp_umat4x3							umat4x3; | ||||
| 	typedef lowp_umat4x4							umat4x4; | ||||
| #else //if(defined(GLM_PRECISION_MEDIUMP_UINT)) | ||||
| 	 | ||||
| 	/// Unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat2							umat2; | ||||
|  | ||||
| 	/// Unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat3							umat3; | ||||
|  | ||||
| 	/// Unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat4							umat4; | ||||
|  | ||||
| 	/// Unsigned integer 2x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat2x2							umat2x2; | ||||
|  | ||||
| 	/// Unsigned integer 2x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat2x3							umat2x3; | ||||
|  | ||||
| 	/// Unsigned integer 2x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat2x4							umat2x4; | ||||
|  | ||||
| 	/// Unsigned integer 3x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat3x2							umat3x2; | ||||
|  | ||||
| 	/// Unsigned integer 3x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat3x3							umat3x3; | ||||
|  | ||||
| 	/// Unsigned integer 3x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat3x4							umat3x4; | ||||
|  | ||||
| 	/// Unsigned integer 4x2 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat4x2							umat4x2; | ||||
|  | ||||
| 	/// Unsigned integer 4x3 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat4x3							umat4x3; | ||||
|  | ||||
| 	/// Unsigned integer 4x4 matrix. | ||||
| 	/// @see gtc_matrix_integer | ||||
| 	typedef mediump_umat4x4							umat4x4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
							
								
								
									
										49
									
								
								lib/glm/gtc/matrix_inverse.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								lib/glm/gtc/matrix_inverse.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,49 @@ | ||||
| /// @ref gtc_matrix_inverse | ||||
| /// @file glm/gtc/matrix_inverse.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// Defines additional matrix inverting functions. | ||||
| /// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../matrix.hpp" | ||||
| #include "../mat2x2.hpp" | ||||
| #include "../mat3x3.hpp" | ||||
| #include "../mat4x4.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_matrix_inverse extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_matrix_inverse | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Fast matrix inverse for affine matrix. | ||||
| 	///  | ||||
| 	/// @param m Input matrix to invert. | ||||
| 	/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. | ||||
| 	/// @see gtc_matrix_inverse | ||||
| 	template <typename genType>  | ||||
| 	GLM_FUNC_DECL genType affineInverse(genType const & m); | ||||
|  | ||||
| 	/// Compute the inverse transpose of a matrix. | ||||
| 	///  | ||||
| 	/// @param m Input matrix to invert transpose. | ||||
| 	/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. | ||||
| 	/// @see gtc_matrix_inverse | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType inverseTranspose(genType const & m); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "matrix_inverse.inl" | ||||
							
								
								
									
										120
									
								
								lib/glm/gtc/matrix_inverse.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								lib/glm/gtc/matrix_inverse.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | ||||
| /// @ref gtc_matrix_inverse | ||||
| /// @file glm/gtc/matrix_inverse.inl | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m) | ||||
| 	{ | ||||
| 		tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m))); | ||||
|  | ||||
| 		return tmat3x3<T, P>( | ||||
| 			tvec3<T, P>(Inv[0], static_cast<T>(0)), | ||||
| 			tvec3<T, P>(Inv[1], static_cast<T>(0)), | ||||
| 			tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m) | ||||
| 	{ | ||||
| 		tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m))); | ||||
|  | ||||
| 		return tmat4x4<T, P>( | ||||
| 			tvec4<T, P>(Inv[0], static_cast<T>(0)), | ||||
| 			tvec4<T, P>(Inv[1], static_cast<T>(0)), | ||||
| 			tvec4<T, P>(Inv[2], static_cast<T>(0)), | ||||
| 			tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m) | ||||
| 	{ | ||||
| 		T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; | ||||
|  | ||||
| 		tmat2x2<T, P> Inverse( | ||||
| 			+ m[1][1] / Determinant, | ||||
| 			- m[0][1] / Determinant, | ||||
| 			- m[1][0] / Determinant, | ||||
| 			+ m[0][0] / Determinant); | ||||
|  | ||||
| 		return Inverse; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m) | ||||
| 	{ | ||||
| 		T Determinant = | ||||
| 			+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) | ||||
| 			- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) | ||||
| 			+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); | ||||
|  | ||||
| 		tmat3x3<T, P> Inverse(uninitialize); | ||||
| 		Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); | ||||
| 		Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); | ||||
| 		Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); | ||||
| 		Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); | ||||
| 		Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); | ||||
| 		Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); | ||||
| 		Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); | ||||
| 		Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); | ||||
| 		Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); | ||||
| 		Inverse /= Determinant; | ||||
|  | ||||
| 		return Inverse; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m) | ||||
| 	{ | ||||
| 		T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; | ||||
| 		T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; | ||||
| 		T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; | ||||
| 		T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; | ||||
| 		T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; | ||||
| 		T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; | ||||
| 		T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; | ||||
| 		T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; | ||||
| 		T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; | ||||
| 		T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; | ||||
| 		T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; | ||||
| 		T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; | ||||
| 		T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; | ||||
| 		T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; | ||||
| 		T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; | ||||
| 		T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; | ||||
| 		T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; | ||||
| 		T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; | ||||
| 		T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; | ||||
|  | ||||
| 		tmat4x4<T, P> Inverse(uninitialize); | ||||
| 		Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); | ||||
| 		Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); | ||||
| 		Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); | ||||
| 		Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05); | ||||
|  | ||||
| 		Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); | ||||
| 		Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); | ||||
| 		Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); | ||||
| 		Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05); | ||||
|  | ||||
| 		Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); | ||||
| 		Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); | ||||
| 		Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12); | ||||
| 		Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12); | ||||
|  | ||||
| 		Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15); | ||||
| 		Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17); | ||||
| 		Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18); | ||||
| 		Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18); | ||||
|  | ||||
| 		T Determinant = | ||||
| 			+ m[0][0] * Inverse[0][0] | ||||
| 			+ m[0][1] * Inverse[0][1] | ||||
| 			+ m[0][2] * Inverse[0][2] | ||||
| 			+ m[0][3] * Inverse[0][3]; | ||||
|  | ||||
| 		Inverse /= Determinant; | ||||
|  | ||||
| 		return Inverse; | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										465
									
								
								lib/glm/gtc/matrix_transform.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										465
									
								
								lib/glm/gtc/matrix_transform.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,465 @@ | ||||
| /// @ref gtc_matrix_transform | ||||
| /// @file glm/gtc/matrix_transform.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtx_transform | ||||
| /// @see gtx_transform2 | ||||
| ///  | ||||
| /// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Defines functions that generate common transformation matrices. | ||||
| /// | ||||
| /// The matrices generated by this extension use standard OpenGL fixed-function | ||||
| /// conventions. For example, the lookAt function generates a transform from world | ||||
| /// space into the specific eye space that the projective matrix functions  | ||||
| /// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility | ||||
| /// specifications defines the particular layout of this eye space. | ||||
| /// | ||||
| /// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../mat4x4.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../gtc/constants.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_matrix_transform extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_matrix_transform | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Builds a translation 4 * 4 matrix created from a vector of 3 components. | ||||
| 	///  | ||||
| 	/// @param m Input matrix multiplied by this translation matrix. | ||||
| 	/// @param v Coordinates of a translation vector. | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @code | ||||
| 	/// #include <glm/glm.hpp> | ||||
| 	/// #include <glm/gtc/matrix_transform.hpp> | ||||
| 	/// ... | ||||
| 	/// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f)); | ||||
| 	/// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f | ||||
| 	/// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f | ||||
| 	/// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f | ||||
| 	/// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f | ||||
| 	/// @endcode | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z) | ||||
| 	/// @see - translate(tvec3<T, P> const & v) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> translate( | ||||
| 		tmat4x4<T, P> const & m, | ||||
| 		tvec3<T, P> const & v); | ||||
| 		 | ||||
| 	/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.  | ||||
| 	///  | ||||
| 	/// @param m Input matrix multiplied by this rotation matrix. | ||||
| 	/// @param angle Rotation angle expressed in radians. | ||||
| 	/// @param axis Rotation axis, recommended to be normalized. | ||||
| 	/// @tparam T Value type used to build the matrix. Supported: half, float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z)  | ||||
| 	/// @see - rotate(T angle, tvec3<T, P> const & v)  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> rotate( | ||||
| 		tmat4x4<T, P> const & m, | ||||
| 		T angle, | ||||
| 		tvec3<T, P> const & axis); | ||||
|  | ||||
| 	/// Builds a scale 4 * 4 matrix created from 3 scalars.  | ||||
| 	///  | ||||
| 	/// @param m Input matrix multiplied by this scale matrix. | ||||
| 	/// @param v Ratio of scaling for each axis. | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z) | ||||
| 	/// @see - scale(tvec3<T, P> const & v) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> scale( | ||||
| 		tmat4x4<T, P> const & m, | ||||
| 		tvec3<T, P> const & v); | ||||
|  | ||||
| 	/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param zNear | ||||
| 	/// @param zFar | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T zNear, | ||||
| 		T zFar); | ||||
|  | ||||
| 	/// Creates a matrix for an orthographic parallel viewing volume, using left-handedness. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param zNear | ||||
| 	/// @param zFar | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T zNear, | ||||
| 		T zFar); | ||||
|  | ||||
| 	/// Creates a matrix for an orthographic parallel viewing volume, using right-handedness. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param zNear | ||||
| 	/// @param zFar | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T zNear, | ||||
| 		T zFar); | ||||
|  | ||||
| 	/// Creates a matrix for projecting two-dimensional coordinates onto the screen. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar) | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top); | ||||
|  | ||||
| 	/// Creates a frustum matrix with default handedness. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param near | ||||
| 	/// @param far | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> frustum( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a left handed frustum matrix. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param near | ||||
| 	/// @param far | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a right handed frustum matrix. | ||||
| 	/// | ||||
| 	/// @param left | ||||
| 	/// @param right | ||||
| 	/// @param bottom | ||||
| 	/// @param top | ||||
| 	/// @param near | ||||
| 	/// @param far | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH( | ||||
| 		T left, | ||||
| 		T right, | ||||
| 		T bottom, | ||||
| 		T top, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a matrix for a symetric perspective-view frustum based on the default handedness. | ||||
| 	///  | ||||
| 	/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspective( | ||||
| 		T fovy, | ||||
| 		T aspect, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a matrix for a right handed, symetric perspective-view frustum. | ||||
| 	///  | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH( | ||||
| 		T fovy, | ||||
| 		T aspect, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a matrix for a left handed, symetric perspective-view frustum. | ||||
| 	///  | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH( | ||||
| 		T fovy, | ||||
| 		T aspect, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Builds a perspective projection matrix based on a field of view and the default handedness. | ||||
| 	///  | ||||
| 	/// @param fov Expressed in radians. | ||||
| 	/// @param width  | ||||
| 	/// @param height  | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov( | ||||
| 		T fov, | ||||
| 		T width, | ||||
| 		T height, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Builds a right handed perspective projection matrix based on a field of view. | ||||
| 	///  | ||||
| 	/// @param fov Expressed in radians. | ||||
| 	/// @param width  | ||||
| 	/// @param height  | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH( | ||||
| 		T fov, | ||||
| 		T width, | ||||
| 		T height, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Builds a left handed perspective projection matrix based on a field of view. | ||||
| 	///  | ||||
| 	/// @param fov Expressed in radians. | ||||
| 	/// @param width  | ||||
| 	/// @param height  | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param far Specifies the distance from the viewer to the far clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH( | ||||
| 		T fov, | ||||
| 		T width, | ||||
| 		T height, | ||||
| 		T near, | ||||
| 		T far); | ||||
|  | ||||
| 	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. | ||||
| 	/// | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective( | ||||
| 		T fovy, T aspect, T near); | ||||
|  | ||||
| 	/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. | ||||
| 	/// | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH( | ||||
| 		T fovy, T aspect, T near); | ||||
|  | ||||
| 	/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. | ||||
| 	/// | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH( | ||||
| 		T fovy, T aspect, T near); | ||||
|  | ||||
| 	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. | ||||
| 	///  | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( | ||||
| 		T fovy, T aspect, T near); | ||||
|  | ||||
| 	/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. | ||||
| 	///  | ||||
| 	/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. | ||||
| 	/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). | ||||
| 	/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). | ||||
| 	/// @param ep  | ||||
| 	/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( | ||||
| 		T fovy, T aspect, T near, T ep); | ||||
|  | ||||
| 	/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. | ||||
| 	///  | ||||
| 	/// @param obj Specify the object coordinates. | ||||
| 	/// @param model Specifies the current modelview matrix | ||||
| 	/// @param proj Specifies the current projection matrix | ||||
| 	/// @param viewport Specifies the current viewport | ||||
| 	/// @return Return the computed window coordinates. | ||||
| 	/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @tparam U Currently supported: Floating-point types and integer types. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T, typename U, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> project( | ||||
| 		tvec3<T, P> const & obj, | ||||
| 		tmat4x4<T, P> const & model, | ||||
| 		tmat4x4<T, P> const & proj, | ||||
| 		tvec4<U, P> const & viewport); | ||||
|  | ||||
| 	/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. | ||||
| 	/// | ||||
| 	/// @param win Specify the window coordinates to be mapped. | ||||
| 	/// @param model Specifies the modelview matrix | ||||
| 	/// @param proj Specifies the projection matrix | ||||
| 	/// @param viewport Specifies the viewport | ||||
| 	/// @return Returns the computed object coordinates. | ||||
| 	/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @tparam U Currently supported: Floating-point types and integer types. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T, typename U, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> unProject( | ||||
| 		tvec3<T, P> const & win, | ||||
| 		tmat4x4<T, P> const & model, | ||||
| 		tmat4x4<T, P> const & proj, | ||||
| 		tvec4<U, P> const & viewport); | ||||
|  | ||||
| 	/// Define a picking region | ||||
| 	/// | ||||
| 	/// @param center | ||||
| 	/// @param delta | ||||
| 	/// @param viewport | ||||
| 	/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. | ||||
| 	/// @tparam U Currently supported: Floating-point types and integer types. | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	template <typename T, precision P, typename U> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> pickMatrix( | ||||
| 		tvec2<T, P> const & center, | ||||
| 		tvec2<T, P> const & delta, | ||||
| 		tvec4<U, P> const & viewport); | ||||
|  | ||||
| 	/// Build a look at view matrix based on the default handedness. | ||||
| 	/// | ||||
| 	/// @param eye Position of the camera | ||||
| 	/// @param center Position where the camera is looking at | ||||
| 	/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> lookAt( | ||||
| 		tvec3<T, P> const & eye, | ||||
| 		tvec3<T, P> const & center, | ||||
| 		tvec3<T, P> const & up); | ||||
|  | ||||
| 	/// Build a right handed look at view matrix. | ||||
| 	/// | ||||
| 	/// @param eye Position of the camera | ||||
| 	/// @param center Position where the camera is looking at | ||||
| 	/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> lookAtRH( | ||||
| 		tvec3<T, P> const & eye, | ||||
| 		tvec3<T, P> const & center, | ||||
| 		tvec3<T, P> const & up); | ||||
|  | ||||
| 	/// Build a left handed look at view matrix. | ||||
| 	/// | ||||
| 	/// @param eye Position of the camera | ||||
| 	/// @param center Position where the camera is looking at | ||||
| 	/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) | ||||
| 	/// @see gtc_matrix_transform | ||||
| 	/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> lookAtLH( | ||||
| 		tvec3<T, P> const & eye, | ||||
| 		tvec3<T, P> const & center, | ||||
| 		tvec3<T, P> const & up); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "matrix_transform.inl" | ||||
							
								
								
									
										575
									
								
								lib/glm/gtc/matrix_transform.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										575
									
								
								lib/glm/gtc/matrix_transform.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,575 @@ | ||||
| /// @ref gtc_matrix_transform | ||||
| /// @file glm/gtc/matrix_transform.inl | ||||
|  | ||||
| #include "../geometric.hpp" | ||||
| #include "../trigonometric.hpp" | ||||
| #include "../matrix.hpp" | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tmat4x4<T, P> Result(m); | ||||
| 		Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; | ||||
| 		return Result; | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		T const a = angle; | ||||
| 		T const c = cos(a); | ||||
| 		T const s = sin(a); | ||||
|  | ||||
| 		tvec3<T, P> axis(normalize(v)); | ||||
| 		tvec3<T, P> temp((T(1) - c) * axis); | ||||
|  | ||||
| 		tmat4x4<T, P> Rotate(uninitialize); | ||||
| 		Rotate[0][0] = c + temp[0] * axis[0]; | ||||
| 		Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; | ||||
| 		Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; | ||||
|  | ||||
| 		Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; | ||||
| 		Rotate[1][1] = c + temp[1] * axis[1]; | ||||
| 		Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; | ||||
|  | ||||
| 		Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; | ||||
| 		Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; | ||||
| 		Rotate[2][2] = c + temp[2] * axis[2]; | ||||
|  | ||||
| 		tmat4x4<T, P> Result(uninitialize); | ||||
| 		Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; | ||||
| 		Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; | ||||
| 		Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; | ||||
| 		Result[3] = m[3]; | ||||
| 		return Result; | ||||
| 	} | ||||
| 		 | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		T const a = angle; | ||||
| 		T const c = cos(a); | ||||
| 		T const s = sin(a); | ||||
| 		tmat4x4<T, P> Result; | ||||
|  | ||||
| 		tvec3<T, P> axis = normalize(v); | ||||
|  | ||||
| 		Result[0][0] = c + (static_cast<T>(1) - c)      * axis.x     * axis.x; | ||||
| 		Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; | ||||
| 		Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y; | ||||
| 		Result[0][3] = static_cast<T>(0); | ||||
|  | ||||
| 		Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z; | ||||
| 		Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y; | ||||
| 		Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x; | ||||
| 		Result[1][3] = static_cast<T>(0); | ||||
|  | ||||
| 		Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y; | ||||
| 		Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x; | ||||
| 		Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; | ||||
| 		Result[2][3] = static_cast<T>(0); | ||||
|  | ||||
| 		Result[3] = tvec4<T, P>(0, 0, 0, 1); | ||||
| 		return m * Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tmat4x4<T, P> Result(uninitialize); | ||||
| 		Result[0] = m[0] * v[0]; | ||||
| 		Result[1] = m[1] * v[1]; | ||||
| 		Result[2] = m[2] * v[2]; | ||||
| 		Result[3] = m[3]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tmat4x4<T, P> Result(T(1)); | ||||
| 		Result[0][0] = v.x; | ||||
| 		Result[1][1] = v.y; | ||||
| 		Result[2][2] = v.z; | ||||
| 		return m * Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T zNear, T zFar | ||||
| 	) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return orthoLH(left, right, bottom, top, zNear, zFar); | ||||
| #		else | ||||
| 			return orthoRH(left, right, bottom, top, zNear, zFar); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T zNear, T zFar | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result(1); | ||||
| 		Result[0][0] = static_cast<T>(2) / (right - left); | ||||
| 		Result[1][1] = static_cast<T>(2) / (top - bottom); | ||||
| 		Result[3][0] = - (right + left) / (right - left); | ||||
| 		Result[3][1] = - (top + bottom) / (top - bottom); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = static_cast<T>(1) / (zFar - zNear); | ||||
| 			Result[3][2] = - zNear / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = static_cast<T>(2) / (zFar - zNear); | ||||
| 			Result[3][2] = - (zFar + zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T zNear, T zFar | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result(1); | ||||
| 		Result[0][0] = static_cast<T>(2) / (right - left); | ||||
| 		Result[1][1] = static_cast<T>(2) / (top - bottom); | ||||
| 		Result[3][0] = - (right + left) / (right - left); | ||||
| 		Result[3][1] = - (top + bottom) / (top - bottom); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = - static_cast<T>(1) / (zFar - zNear); | ||||
| 			Result[3][2] = - zNear / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = - static_cast<T>(2) / (zFar - zNear); | ||||
| 			Result[3][2] = - (zFar + zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(1)); | ||||
| 		Result[0][0] = static_cast<T>(2) / (right - left); | ||||
| 		Result[1][1] = static_cast<T>(2) / (top - bottom); | ||||
| 		Result[2][2] = - static_cast<T>(1); | ||||
| 		Result[3][0] = - (right + left) / (right - left); | ||||
| 		Result[3][1] = - (top + bottom) / (top - bottom); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T nearVal, T farVal | ||||
| 	) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return frustumLH(left, right, bottom, top, nearVal, farVal); | ||||
| #		else | ||||
| 			return frustumRH(left, right, bottom, top, nearVal, farVal); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T nearVal, T farVal | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result(0); | ||||
| 		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); | ||||
| 		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); | ||||
| 		Result[2][0] = (right + left) / (right - left); | ||||
| 		Result[2][1] = (top + bottom) / (top - bottom); | ||||
| 		Result[2][3] = static_cast<T>(1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = farVal / (farVal - nearVal); | ||||
| 			Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); | ||||
| #		else | ||||
| 			Result[2][2] = (farVal + nearVal) / (farVal - nearVal); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH | ||||
| 	( | ||||
| 		T left, T right, | ||||
| 		T bottom, T top, | ||||
| 		T nearVal, T farVal | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result(0); | ||||
| 		Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); | ||||
| 		Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); | ||||
| 		Result[2][0] = (right + left) / (right - left); | ||||
| 		Result[2][1] = (top + bottom) / (top - bottom); | ||||
| 		Result[2][3] = static_cast<T>(-1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = farVal / (nearVal - farVal); | ||||
| 			Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); | ||||
| #		else | ||||
| 			Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return perspectiveLH(fovy, aspect, zNear, zFar); | ||||
| #		else | ||||
| 			return perspectiveRH(fovy, aspect, zNear, zFar); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) | ||||
| 	{ | ||||
| 		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); | ||||
|  | ||||
| 		T const tanHalfFovy = tan(fovy / static_cast<T>(2)); | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); | ||||
| 		Result[1][1] = static_cast<T>(1) / (tanHalfFovy); | ||||
| 		Result[2][3] = - static_cast<T>(1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = zFar / (zNear - zFar); | ||||
| 			Result[3][2] = -(zFar * zNear) / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = - (zFar + zNear) / (zFar - zNear); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) | ||||
| 	{ | ||||
| 		assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); | ||||
|  | ||||
| 		T const tanHalfFovy = tan(fovy / static_cast<T>(2)); | ||||
| 		 | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); | ||||
| 		Result[1][1] = static_cast<T>(1) / (tanHalfFovy); | ||||
| 		Result[2][3] = static_cast<T>(1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = zFar / (zFar - zNear); | ||||
| 			Result[3][2] = -(zFar * zNear) / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = (zFar + zNear) / (zFar - zNear); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return perspectiveFovLH(fov, width, height, zNear, zFar); | ||||
| #		else | ||||
| 			return perspectiveFovRH(fov, width, height, zNear, zFar); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) | ||||
| 	{ | ||||
| 		assert(width > static_cast<T>(0)); | ||||
| 		assert(height > static_cast<T>(0)); | ||||
| 		assert(fov > static_cast<T>(0)); | ||||
| 	 | ||||
| 		T const rad = fov; | ||||
| 		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); | ||||
| 		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = w; | ||||
| 		Result[1][1] = h; | ||||
| 		Result[2][3] = - static_cast<T>(1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = zFar / (zNear - zFar); | ||||
| 			Result[3][2] = -(zFar * zNear) / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = - (zFar + zNear) / (zFar - zNear); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) | ||||
| 	{ | ||||
| 		assert(width > static_cast<T>(0)); | ||||
| 		assert(height > static_cast<T>(0)); | ||||
| 		assert(fov > static_cast<T>(0)); | ||||
| 	 | ||||
| 		T const rad = fov; | ||||
| 		T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); | ||||
| 		T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = w; | ||||
| 		Result[1][1] = h; | ||||
| 		Result[2][3] = static_cast<T>(1); | ||||
|  | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			Result[2][2] = zFar / (zFar - zNear); | ||||
| 			Result[3][2] = -(zFar * zNear) / (zFar - zNear); | ||||
| #		else | ||||
| 			Result[2][2] = (zFar + zNear) / (zFar - zNear); | ||||
| 			Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); | ||||
| #		endif | ||||
|  | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return infinitePerspectiveLH(fovy, aspect, zNear); | ||||
| #		else | ||||
| 			return infinitePerspectiveRH(fovy, aspect, zNear); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) | ||||
| 	{ | ||||
| 		T const range = tan(fovy / static_cast<T>(2)) * zNear; | ||||
| 		T const left = -range * aspect; | ||||
| 		T const right = range * aspect; | ||||
| 		T const bottom = -range; | ||||
| 		T const top = range; | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | ||||
| 		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | ||||
| 		Result[2][2] = - static_cast<T>(1); | ||||
| 		Result[2][3] = - static_cast<T>(1); | ||||
| 		Result[3][2] = - static_cast<T>(2) * zNear; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) | ||||
| 	{ | ||||
| 		T const range = tan(fovy / static_cast<T>(2)) * zNear; | ||||
| 		T const left = -range * aspect; | ||||
| 		T const right = range * aspect; | ||||
| 		T const bottom = -range; | ||||
| 		T const top = range; | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(T(0)); | ||||
| 		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | ||||
| 		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | ||||
| 		Result[2][2] = static_cast<T>(1); | ||||
| 		Result[2][3] = static_cast<T>(1); | ||||
| 		Result[3][2] = - static_cast<T>(2) * zNear; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) | ||||
| 	{ | ||||
| 		T const range = tan(fovy / static_cast<T>(2)) * zNear;	 | ||||
| 		T const left = -range * aspect; | ||||
| 		T const right = range * aspect; | ||||
| 		T const bottom = -range; | ||||
| 		T const top = range; | ||||
|  | ||||
| 		tmat4x4<T, defaultp> Result(static_cast<T>(0)); | ||||
| 		Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); | ||||
| 		Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); | ||||
| 		Result[2][2] = ep - static_cast<T>(1); | ||||
| 		Result[2][3] = static_cast<T>(-1); | ||||
| 		Result[3][2] = (ep - static_cast<T>(2)) * zNear; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) | ||||
| 	{ | ||||
| 		return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, typename U, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> project | ||||
| 	( | ||||
| 		tvec3<T, P> const & obj, | ||||
| 		tmat4x4<T, P> const & model, | ||||
| 		tmat4x4<T, P> const & proj, | ||||
| 		tvec4<U, P> const & viewport | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); | ||||
| 		tmp = model * tmp; | ||||
| 		tmp = proj * tmp; | ||||
|  | ||||
| 		tmp /= tmp.w; | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); | ||||
| 			tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); | ||||
| #		else | ||||
| 			tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); | ||||
| #		endif | ||||
| 		tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); | ||||
| 		tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); | ||||
|  | ||||
| 		return tvec3<T, P>(tmp); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, typename U, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> unProject | ||||
| 	( | ||||
| 		tvec3<T, P> const & win, | ||||
| 		tmat4x4<T, P> const & model, | ||||
| 		tmat4x4<T, P> const & proj, | ||||
| 		tvec4<U, P> const & viewport | ||||
| 	) | ||||
| 	{ | ||||
| 		tmat4x4<T, P> Inverse = inverse(proj * model); | ||||
|  | ||||
| 		tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); | ||||
| 		tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); | ||||
| 		tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); | ||||
| #		if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE | ||||
| 			tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); | ||||
| 			tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); | ||||
| #		else | ||||
| 			tmp = tmp * static_cast<T>(2) - static_cast<T>(1); | ||||
| #		endif | ||||
|  | ||||
| 		tvec4<T, P> obj = Inverse * tmp; | ||||
| 		obj /= obj.w; | ||||
|  | ||||
| 		return tvec3<T, P>(obj); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, typename U> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) | ||||
| 	{ | ||||
| 		assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); | ||||
| 		tmat4x4<T, P> Result(static_cast<T>(1)); | ||||
|  | ||||
| 		if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) | ||||
| 			return Result; // Error | ||||
|  | ||||
| 		tvec3<T, P> Temp( | ||||
| 			(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, | ||||
| 			(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, | ||||
| 			static_cast<T>(0)); | ||||
|  | ||||
| 		// Translate and scale the picked region to the entire window | ||||
| 		Result = translate(Result, Temp); | ||||
| 		return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) | ||||
| 	{ | ||||
| #		if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED | ||||
| 			return lookAtLH(eye, center, up); | ||||
| #		else | ||||
| 			return lookAtRH(eye, center, up); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH | ||||
| 	( | ||||
| 		tvec3<T, P> const & eye, | ||||
| 		tvec3<T, P> const & center, | ||||
| 		tvec3<T, P> const & up | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec3<T, P> const f(normalize(center - eye)); | ||||
| 		tvec3<T, P> const s(normalize(cross(f, up))); | ||||
| 		tvec3<T, P> const u(cross(s, f)); | ||||
|  | ||||
| 		tmat4x4<T, P> Result(1); | ||||
| 		Result[0][0] = s.x; | ||||
| 		Result[1][0] = s.y; | ||||
| 		Result[2][0] = s.z; | ||||
| 		Result[0][1] = u.x; | ||||
| 		Result[1][1] = u.y; | ||||
| 		Result[2][1] = u.z; | ||||
| 		Result[0][2] =-f.x; | ||||
| 		Result[1][2] =-f.y; | ||||
| 		Result[2][2] =-f.z; | ||||
| 		Result[3][0] =-dot(s, eye); | ||||
| 		Result[3][1] =-dot(u, eye); | ||||
| 		Result[3][2] = dot(f, eye); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH | ||||
| 	( | ||||
| 		tvec3<T, P> const & eye, | ||||
| 		tvec3<T, P> const & center, | ||||
| 		tvec3<T, P> const & up | ||||
| 	) | ||||
| 	{ | ||||
| 		tvec3<T, P> const f(normalize(center - eye)); | ||||
| 		tvec3<T, P> const s(normalize(cross(up, f))); | ||||
| 		tvec3<T, P> const u(cross(f, s)); | ||||
|  | ||||
| 		tmat4x4<T, P> Result(1); | ||||
| 		Result[0][0] = s.x; | ||||
| 		Result[1][0] = s.y; | ||||
| 		Result[2][0] = s.z; | ||||
| 		Result[0][1] = u.x; | ||||
| 		Result[1][1] = u.y; | ||||
| 		Result[2][1] = u.z; | ||||
| 		Result[0][2] = f.x; | ||||
| 		Result[1][2] = f.y; | ||||
| 		Result[2][2] = f.z; | ||||
| 		Result[3][0] = -dot(s, eye); | ||||
| 		Result[3][1] = -dot(u, eye); | ||||
| 		Result[3][2] = -dot(f, eye); | ||||
| 		return Result; | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										60
									
								
								lib/glm/gtc/noise.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								lib/glm/gtc/noise.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,60 @@ | ||||
| /// @ref gtc_noise | ||||
| /// @file glm/gtc/noise.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_noise GLM_GTC_noise | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// Defines 2D, 3D and 4D procedural noise functions  | ||||
| /// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":  | ||||
| /// https://github.com/ashima/webgl-noise  | ||||
| /// Following Stefan Gustavson's paper "Simplex noise demystified":  | ||||
| /// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | ||||
| /// <glm/gtc/noise.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/_noise.hpp" | ||||
| #include "../geometric.hpp" | ||||
| #include "../common.hpp" | ||||
| #include "../vector_relational.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_noise extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_noise | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Classic perlin noise. | ||||
| 	/// @see gtc_noise | ||||
| 	template <typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL T perlin( | ||||
| 		vecType<T, P> const & p); | ||||
| 		 | ||||
| 	/// Periodic perlin noise. | ||||
| 	/// @see gtc_noise | ||||
| 	template <typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL T perlin( | ||||
| 		vecType<T, P> const & p, | ||||
| 		vecType<T, P> const & rep); | ||||
|  | ||||
| 	/// Simplex noise. | ||||
| 	/// @see gtc_noise | ||||
| 	template <typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL T simplex( | ||||
| 		vecType<T, P> const & p); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "noise.inl" | ||||
							
								
								
									
										808
									
								
								lib/glm/gtc/noise.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										808
									
								
								lib/glm/gtc/noise.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,808 @@ | ||||
| /// @ref gtc_noise | ||||
| /// @file glm/gtc/noise.inl | ||||
| /// | ||||
| // Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":  | ||||
| // https://github.com/ashima/webgl-noise  | ||||
| // Following Stefan Gustavson's paper "Simplex noise demystified":  | ||||
| // http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | ||||
|  | ||||
| namespace glm{ | ||||
| namespace gtc | ||||
| { | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip) | ||||
| 	{ | ||||
| 		tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1); | ||||
| 		T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1)); | ||||
| 		tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0))); | ||||
| 		pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w;  | ||||
| 		return tvec4<T, P>(pXYZ, pW); | ||||
| 	} | ||||
| }//namespace gtc | ||||
|  | ||||
| 	// Classic Perlin noise | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position) | ||||
| 	{ | ||||
| 		tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); | ||||
| 		tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); | ||||
| 		Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation | ||||
| 		tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); | ||||
| 		tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); | ||||
| 		tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); | ||||
| 		tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); | ||||
|  | ||||
| 		tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); | ||||
|  | ||||
| 		tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1); | ||||
| 		tvec4<T, P> gy = glm::abs(gx) - T(0.5); | ||||
| 		tvec4<T, P> tx = glm::floor(gx + T(0.5)); | ||||
| 		gx = gx - tx; | ||||
|  | ||||
| 		tvec2<T, P> g00(gx.x, gy.x); | ||||
| 		tvec2<T, P> g10(gx.y, gy.y); | ||||
| 		tvec2<T, P> g01(gx.z, gy.z); | ||||
| 		tvec2<T, P> g11(gx.w, gy.w); | ||||
|  | ||||
| 		tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); | ||||
| 		g00 *= norm.x; | ||||
| 		g01 *= norm.y; | ||||
| 		g10 *= norm.z; | ||||
| 		g11 *= norm.w; | ||||
|  | ||||
| 		T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); | ||||
| 		T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); | ||||
| 		T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); | ||||
| 		T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); | ||||
|  | ||||
| 		tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); | ||||
| 		tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); | ||||
| 		T n_xy = mix(n_x.x, n_x.y, fade_xy.y); | ||||
| 		return T(2.3) * n_xy; | ||||
| 	} | ||||
|  | ||||
| 	// Classic Perlin noise | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position) | ||||
| 	{ | ||||
| 		tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing | ||||
| 		tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 | ||||
| 		Pi0 = detail::mod289(Pi0); | ||||
| 		Pi1 = detail::mod289(Pi1); | ||||
| 		tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation | ||||
| 		tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 | ||||
| 		tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); | ||||
| 		tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y)); | ||||
| 		tvec4<T, P> iz0(Pi0.z); | ||||
| 		tvec4<T, P> iz1(Pi1.z); | ||||
|  | ||||
| 		tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); | ||||
| 		tvec4<T, P> ixy0 = detail::permute(ixy + iz0); | ||||
| 		tvec4<T, P> ixy1 = detail::permute(ixy + iz1); | ||||
|  | ||||
| 		tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0); | ||||
| 		tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); | ||||
| 		gx0 = fract(gx0); | ||||
| 		tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); | ||||
| 		tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); | ||||
| 		gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); | ||||
| 		gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0); | ||||
| 		tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); | ||||
| 		gx1 = fract(gx1); | ||||
| 		tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); | ||||
| 		tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); | ||||
| 		gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); | ||||
| 		gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); | ||||
|  | ||||
| 		tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); | ||||
| 		tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); | ||||
| 		tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); | ||||
| 		tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); | ||||
| 		tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); | ||||
| 		tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); | ||||
| 		tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); | ||||
| 		tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); | ||||
|  | ||||
| 		tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); | ||||
| 		g000 *= norm0.x; | ||||
| 		g010 *= norm0.y; | ||||
| 		g100 *= norm0.z; | ||||
| 		g110 *= norm0.w; | ||||
| 		tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); | ||||
| 		g001 *= norm1.x; | ||||
| 		g011 *= norm1.y; | ||||
| 		g101 *= norm1.z; | ||||
| 		g111 *= norm1.w; | ||||
|  | ||||
| 		T n000 = dot(g000, Pf0); | ||||
| 		T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); | ||||
| 		T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); | ||||
| 		T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); | ||||
| 		T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); | ||||
| 		T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); | ||||
| 		T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); | ||||
| 		T n111 = dot(g111, Pf1); | ||||
|  | ||||
| 		tvec3<T, P> fade_xyz = detail::fade(Pf0); | ||||
| 		tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); | ||||
| 		tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); | ||||
| 		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);  | ||||
| 		return T(2.2) * n_xyz; | ||||
| 	} | ||||
| 	/* | ||||
| 	// Classic Perlin noise | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P) | ||||
| 	{ | ||||
| 		tvec3<T, P> Pi0 = floor(P); // Integer part for indexing | ||||
| 		tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 | ||||
| 		Pi0 = mod(Pi0, T(289)); | ||||
| 		Pi1 = mod(Pi1, T(289)); | ||||
| 		tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation | ||||
| 		tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 | ||||
| 		tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); | ||||
| 		tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); | ||||
| 		tvec4<T, P> iz0(Pi0.z); | ||||
| 		tvec4<T, P> iz1(Pi1.z); | ||||
|  | ||||
| 		tvec4<T, P> ixy = permute(permute(ix) + iy); | ||||
| 		tvec4<T, P> ixy0 = permute(ixy + iz0); | ||||
| 		tvec4<T, P> ixy1 = permute(ixy + iz1); | ||||
|  | ||||
| 		tvec4<T, P> gx0 = ixy0 / T(7); | ||||
| 		tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); | ||||
| 		gx0 = fract(gx0); | ||||
| 		tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); | ||||
| 		tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); | ||||
| 		gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); | ||||
| 		gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx1 = ixy1 / T(7); | ||||
| 		tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); | ||||
| 		gx1 = fract(gx1); | ||||
| 		tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); | ||||
| 		tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); | ||||
| 		gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); | ||||
| 		gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); | ||||
|  | ||||
| 		tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); | ||||
| 		tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); | ||||
| 		tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); | ||||
| 		tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); | ||||
| 		tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); | ||||
| 		tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); | ||||
| 		tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); | ||||
| 		tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); | ||||
|  | ||||
| 		tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); | ||||
| 		g000 *= norm0.x; | ||||
| 		g010 *= norm0.y; | ||||
| 		g100 *= norm0.z; | ||||
| 		g110 *= norm0.w; | ||||
| 		tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); | ||||
| 		g001 *= norm1.x; | ||||
| 		g011 *= norm1.y; | ||||
| 		g101 *= norm1.z; | ||||
| 		g111 *= norm1.w; | ||||
|  | ||||
| 		T n000 = dot(g000, Pf0); | ||||
| 		T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); | ||||
| 		T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); | ||||
| 		T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); | ||||
| 		T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); | ||||
| 		T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); | ||||
| 		T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); | ||||
| 		T n111 = dot(g111, Pf1); | ||||
|  | ||||
| 		tvec3<T, P> fade_xyz = fade(Pf0); | ||||
| 		tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); | ||||
| 		tvec2<T, P> n_yz = mix( | ||||
| 			tvec2<T, P>(n_z.x, n_z.y),  | ||||
| 			tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); | ||||
| 		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);  | ||||
| 		return T(2.2) * n_xyz; | ||||
| 	} | ||||
| 	*/ | ||||
| 	// Classic Perlin noise | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position) | ||||
| 	{ | ||||
| 		tvec4<T, P> Pi0 = floor(Position);	// Integer part for indexing | ||||
| 		tvec4<T, P> Pi1 = Pi0 + T(1);		// Integer part + 1 | ||||
| 		Pi0 = mod(Pi0, tvec4<T, P>(289)); | ||||
| 		Pi1 = mod(Pi1, tvec4<T, P>(289)); | ||||
| 		tvec4<T, P> Pf0 = fract(Position);	// Fractional part for interpolation | ||||
| 		tvec4<T, P> Pf1 = Pf0 - T(1);		// Fractional part - 1.0 | ||||
| 		tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); | ||||
| 		tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); | ||||
| 		tvec4<T, P> iz0(Pi0.z); | ||||
| 		tvec4<T, P> iz1(Pi1.z); | ||||
| 		tvec4<T, P> iw0(Pi0.w); | ||||
| 		tvec4<T, P> iw1(Pi1.w); | ||||
|  | ||||
| 		tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); | ||||
| 		tvec4<T, P> ixy0 = detail::permute(ixy + iz0); | ||||
| 		tvec4<T, P> ixy1 = detail::permute(ixy + iz1); | ||||
| 		tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); | ||||
| 		tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); | ||||
| 		tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); | ||||
| 		tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); | ||||
|  | ||||
| 		tvec4<T, P> gx00 = ixy00 / T(7); | ||||
| 		tvec4<T, P> gy00 = floor(gx00) / T(7); | ||||
| 		tvec4<T, P> gz00 = floor(gy00) / T(6); | ||||
| 		gx00 = fract(gx00) - T(0.5); | ||||
| 		gy00 = fract(gy00) - T(0.5); | ||||
| 		gz00 = fract(gz00) - T(0.5); | ||||
| 		tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); | ||||
| 		tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0)); | ||||
| 		gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); | ||||
| 		gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx01 = ixy01 / T(7); | ||||
| 		tvec4<T, P> gy01 = floor(gx01) / T(7); | ||||
| 		tvec4<T, P> gz01 = floor(gy01) / T(6); | ||||
| 		gx01 = fract(gx01) - T(0.5); | ||||
| 		gy01 = fract(gy01) - T(0.5); | ||||
| 		gz01 = fract(gz01) - T(0.5); | ||||
| 		tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); | ||||
| 		tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); | ||||
| 		gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); | ||||
| 		gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx10 = ixy10 / T(7); | ||||
| 		tvec4<T, P> gy10 = floor(gx10) / T(7); | ||||
| 		tvec4<T, P> gz10 = floor(gy10) / T(6); | ||||
| 		gx10 = fract(gx10) - T(0.5); | ||||
| 		gy10 = fract(gy10) - T(0.5); | ||||
| 		gz10 = fract(gz10) - T(0.5); | ||||
| 		tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); | ||||
| 		tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0)); | ||||
| 		gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); | ||||
| 		gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx11 = ixy11 / T(7); | ||||
| 		tvec4<T, P> gy11 = floor(gx11) / T(7); | ||||
| 		tvec4<T, P> gz11 = floor(gy11) / T(6); | ||||
| 		gx11 = fract(gx11) - T(0.5); | ||||
| 		gy11 = fract(gy11) - T(0.5); | ||||
| 		gz11 = fract(gz11) - T(0.5); | ||||
| 		tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); | ||||
| 		tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0)); | ||||
| 		gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); | ||||
| 		gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); | ||||
| 		tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); | ||||
| 		tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); | ||||
| 		tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); | ||||
| 		tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); | ||||
| 		tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); | ||||
| 		tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); | ||||
| 		tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); | ||||
| 		tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); | ||||
| 		tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); | ||||
| 		tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); | ||||
| 		tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); | ||||
| 		tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); | ||||
| 		tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); | ||||
| 		tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); | ||||
| 		tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); | ||||
|  | ||||
| 		tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); | ||||
| 		g0000 *= norm00.x; | ||||
| 		g0100 *= norm00.y; | ||||
| 		g1000 *= norm00.z; | ||||
| 		g1100 *= norm00.w; | ||||
|  | ||||
| 		tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); | ||||
| 		g0001 *= norm01.x; | ||||
| 		g0101 *= norm01.y; | ||||
| 		g1001 *= norm01.z; | ||||
| 		g1101 *= norm01.w; | ||||
|  | ||||
| 		tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); | ||||
| 		g0010 *= norm10.x; | ||||
| 		g0110 *= norm10.y; | ||||
| 		g1010 *= norm10.z; | ||||
| 		g1110 *= norm10.w; | ||||
|  | ||||
| 		tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); | ||||
| 		g0011 *= norm11.x; | ||||
| 		g0111 *= norm11.y; | ||||
| 		g1011 *= norm11.z; | ||||
| 		g1111 *= norm11.w; | ||||
|  | ||||
| 		T n0000 = dot(g0000, Pf0); | ||||
| 		T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); | ||||
| 		T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); | ||||
| 		T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); | ||||
| 		T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); | ||||
| 		T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); | ||||
| 		T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); | ||||
| 		T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); | ||||
| 		T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); | ||||
| 		T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); | ||||
| 		T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); | ||||
| 		T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); | ||||
| 		T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); | ||||
| 		T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); | ||||
| 		T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); | ||||
| 		T n1111 = dot(g1111, Pf1); | ||||
|  | ||||
| 		tvec4<T, P> fade_xyzw = detail::fade(Pf0); | ||||
| 		tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); | ||||
| 		tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); | ||||
| 		tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); | ||||
| 		tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); | ||||
| 		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); | ||||
| 		return T(2.2) * n_xyzw; | ||||
| 	} | ||||
|  | ||||
| 	// Classic Perlin noise, periodic variant | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep) | ||||
| 	{ | ||||
| 		tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); | ||||
| 		tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); | ||||
| 		Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period | ||||
| 		Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation | ||||
| 		tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); | ||||
| 		tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); | ||||
| 		tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); | ||||
| 		tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); | ||||
|  | ||||
| 		tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); | ||||
|  | ||||
| 		tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1); | ||||
| 		tvec4<T, P> gy = abs(gx) - T(0.5); | ||||
| 		tvec4<T, P> tx = floor(gx + T(0.5)); | ||||
| 		gx = gx - tx; | ||||
|  | ||||
| 		tvec2<T, P> g00(gx.x, gy.x); | ||||
| 		tvec2<T, P> g10(gx.y, gy.y); | ||||
| 		tvec2<T, P> g01(gx.z, gy.z); | ||||
| 		tvec2<T, P> g11(gx.w, gy.w); | ||||
|  | ||||
| 		tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); | ||||
| 		g00 *= norm.x; | ||||
| 		g01 *= norm.y; | ||||
| 		g10 *= norm.z; | ||||
| 		g11 *= norm.w; | ||||
|  | ||||
| 		T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); | ||||
| 		T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); | ||||
| 		T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); | ||||
| 		T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); | ||||
|  | ||||
| 		tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); | ||||
| 		tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); | ||||
| 		T n_xy = mix(n_x.x, n_x.y, fade_xy.y); | ||||
| 		return T(2.3) * n_xy; | ||||
| 	} | ||||
|  | ||||
| 	// Classic Perlin noise, periodic variant | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep) | ||||
| 	{ | ||||
| 		tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period | ||||
| 		tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period | ||||
| 		Pi0 = mod(Pi0, tvec3<T, P>(289)); | ||||
| 		Pi1 = mod(Pi1, tvec3<T, P>(289)); | ||||
| 		tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation | ||||
| 		tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0 | ||||
| 		tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); | ||||
| 		tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); | ||||
| 		tvec4<T, P> iz0(Pi0.z); | ||||
| 		tvec4<T, P> iz1(Pi1.z); | ||||
|  | ||||
| 		tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); | ||||
| 		tvec4<T, P> ixy0 = detail::permute(ixy + iz0); | ||||
| 		tvec4<T, P> ixy1 = detail::permute(ixy + iz1); | ||||
|  | ||||
| 		tvec4<T, P> gx0 = ixy0 / T(7); | ||||
| 		tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); | ||||
| 		gx0 = fract(gx0); | ||||
| 		tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); | ||||
| 		tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0)); | ||||
| 		gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); | ||||
| 		gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx1 = ixy1 / T(7); | ||||
| 		tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); | ||||
| 		gx1 = fract(gx1); | ||||
| 		tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); | ||||
| 		tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0))); | ||||
| 		gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); | ||||
| 		gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); | ||||
|  | ||||
| 		tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x); | ||||
| 		tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y); | ||||
| 		tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z); | ||||
| 		tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w); | ||||
| 		tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x); | ||||
| 		tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y); | ||||
| 		tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z); | ||||
| 		tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w); | ||||
|  | ||||
| 		tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); | ||||
| 		g000 *= norm0.x; | ||||
| 		g010 *= norm0.y; | ||||
| 		g100 *= norm0.z; | ||||
| 		g110 *= norm0.w; | ||||
| 		tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); | ||||
| 		g001 *= norm1.x; | ||||
| 		g011 *= norm1.y; | ||||
| 		g101 *= norm1.z; | ||||
| 		g111 *= norm1.w; | ||||
|  | ||||
| 		T n000 = dot(g000, Pf0); | ||||
| 		T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); | ||||
| 		T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); | ||||
| 		T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); | ||||
| 		T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); | ||||
| 		T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); | ||||
| 		T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); | ||||
| 		T n111 = dot(g111, Pf1); | ||||
|  | ||||
| 		tvec3<T, P> fade_xyz = detail::fade(Pf0); | ||||
| 		tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); | ||||
| 		tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); | ||||
| 		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); | ||||
| 		return T(2.2) * n_xyz; | ||||
| 	} | ||||
|  | ||||
| 	// Classic Perlin noise, periodic version | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep) | ||||
| 	{ | ||||
| 		tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep | ||||
| 		tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep | ||||
| 		tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation | ||||
| 		tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 | ||||
| 		tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); | ||||
| 		tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); | ||||
| 		tvec4<T, P> iz0(Pi0.z); | ||||
| 		tvec4<T, P> iz1(Pi1.z); | ||||
| 		tvec4<T, P> iw0(Pi0.w); | ||||
| 		tvec4<T, P> iw1(Pi1.w); | ||||
|  | ||||
| 		tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); | ||||
| 		tvec4<T, P> ixy0 = detail::permute(ixy + iz0); | ||||
| 		tvec4<T, P> ixy1 = detail::permute(ixy + iz1); | ||||
| 		tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); | ||||
| 		tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); | ||||
| 		tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); | ||||
| 		tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); | ||||
|  | ||||
| 		tvec4<T, P> gx00 = ixy00 / T(7); | ||||
| 		tvec4<T, P> gy00 = floor(gx00) / T(7); | ||||
| 		tvec4<T, P> gz00 = floor(gy00) / T(6); | ||||
| 		gx00 = fract(gx00) - T(0.5); | ||||
| 		gy00 = fract(gy00) - T(0.5); | ||||
| 		gz00 = fract(gz00) - T(0.5); | ||||
| 		tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); | ||||
| 		tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0)); | ||||
| 		gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); | ||||
| 		gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx01 = ixy01 / T(7); | ||||
| 		tvec4<T, P> gy01 = floor(gx01) / T(7); | ||||
| 		tvec4<T, P> gz01 = floor(gy01) / T(6); | ||||
| 		gx01 = fract(gx01) - T(0.5); | ||||
| 		gy01 = fract(gy01) - T(0.5); | ||||
| 		gz01 = fract(gz01) - T(0.5); | ||||
| 		tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); | ||||
| 		tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); | ||||
| 		gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); | ||||
| 		gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx10 = ixy10 / T(7); | ||||
| 		tvec4<T, P> gy10 = floor(gx10) / T(7); | ||||
| 		tvec4<T, P> gz10 = floor(gy10) / T(6); | ||||
| 		gx10 = fract(gx10) - T(0.5); | ||||
| 		gy10 = fract(gy10) - T(0.5); | ||||
| 		gz10 = fract(gz10) - T(0.5); | ||||
| 		tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); | ||||
| 		tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0)); | ||||
| 		gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); | ||||
| 		gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> gx11 = ixy11 / T(7); | ||||
| 		tvec4<T, P> gy11 = floor(gx11) / T(7); | ||||
| 		tvec4<T, P> gz11 = floor(gy11) / T(6); | ||||
| 		gx11 = fract(gx11) - T(0.5); | ||||
| 		gy11 = fract(gy11) - T(0.5); | ||||
| 		gz11 = fract(gz11) - T(0.5); | ||||
| 		tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); | ||||
| 		tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0))); | ||||
| 		gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); | ||||
| 		gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); | ||||
|  | ||||
| 		tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); | ||||
| 		tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); | ||||
| 		tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); | ||||
| 		tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); | ||||
| 		tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); | ||||
| 		tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); | ||||
| 		tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); | ||||
| 		tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); | ||||
| 		tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); | ||||
| 		tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); | ||||
| 		tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); | ||||
| 		tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); | ||||
| 		tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); | ||||
| 		tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); | ||||
| 		tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); | ||||
| 		tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); | ||||
|  | ||||
| 		tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); | ||||
| 		g0000 *= norm00.x; | ||||
| 		g0100 *= norm00.y; | ||||
| 		g1000 *= norm00.z; | ||||
| 		g1100 *= norm00.w; | ||||
|  | ||||
| 		tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); | ||||
| 		g0001 *= norm01.x; | ||||
| 		g0101 *= norm01.y; | ||||
| 		g1001 *= norm01.z; | ||||
| 		g1101 *= norm01.w; | ||||
|  | ||||
| 		tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); | ||||
| 		g0010 *= norm10.x; | ||||
| 		g0110 *= norm10.y; | ||||
| 		g1010 *= norm10.z; | ||||
| 		g1110 *= norm10.w; | ||||
|  | ||||
| 		tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); | ||||
| 		g0011 *= norm11.x; | ||||
| 		g0111 *= norm11.y; | ||||
| 		g1011 *= norm11.z; | ||||
| 		g1111 *= norm11.w; | ||||
|  | ||||
| 		T n0000 = dot(g0000, Pf0); | ||||
| 		T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); | ||||
| 		T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); | ||||
| 		T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); | ||||
| 		T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); | ||||
| 		T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); | ||||
| 		T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); | ||||
| 		T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); | ||||
| 		T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); | ||||
| 		T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); | ||||
| 		T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); | ||||
| 		T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); | ||||
| 		T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); | ||||
| 		T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); | ||||
| 		T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); | ||||
| 		T n1111 = dot(g1111, Pf1); | ||||
|  | ||||
| 		tvec4<T, P> fade_xyzw = detail::fade(Pf0); | ||||
| 		tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); | ||||
| 		tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); | ||||
| 		tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); | ||||
| 		tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); | ||||
| 		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); | ||||
| 		return T(2.2) * n_xyzw; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec4<T, P> const C = tvec4<T, P>( | ||||
| 			T( 0.211324865405187),  // (3.0 -  sqrt(3.0)) / 6.0 | ||||
| 			T( 0.366025403784439),  //  0.5 * (sqrt(3.0)  - 1.0) | ||||
| 			T(-0.577350269189626),	// -1.0 + 2.0 * C.x | ||||
| 			T( 0.024390243902439)); //  1.0 / 41.0 | ||||
|  | ||||
| 		// First corner | ||||
| 		tvec2<T, P> i  = floor(v + dot(v, tvec2<T, P>(C[1]))); | ||||
| 		tvec2<T, P> x0 = v -   i + dot(i, tvec2<T, P>(C[0])); | ||||
|  | ||||
| 		// Other corners | ||||
| 		//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 | ||||
| 		//i1.y = 1.0 - i1.x; | ||||
| 		tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1); | ||||
| 		// x0 = x0 - 0.0 + 0.0 * C.xx ; | ||||
| 		// x1 = x0 - i1 + 1.0 * C.xx ; | ||||
| 		// x2 = x0 - 1.0 + 2.0 * C.xx ; | ||||
| 		tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z); | ||||
| 		x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w); | ||||
|  | ||||
| 		// Permutations | ||||
| 		i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation | ||||
| 		tvec3<T, P> p = detail::permute( | ||||
| 			detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1))) | ||||
| 			+ i.x + tvec3<T, P>(T(0), i1.x, T(1))); | ||||
|  | ||||
| 		tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>( | ||||
| 			dot(x0, x0), | ||||
| 			dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)),  | ||||
| 			dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0)); | ||||
| 		m = m * m ; | ||||
| 		m = m * m ; | ||||
|  | ||||
| 		// Gradients: 41 points uniformly over a line, mapped onto a diamond. | ||||
| 		// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) | ||||
|  | ||||
| 		tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1); | ||||
| 		tvec3<T, P> h = abs(x) - T(0.5); | ||||
| 		tvec3<T, P> ox = floor(x + T(0.5)); | ||||
| 		tvec3<T, P> a0 = x - ox; | ||||
|  | ||||
| 		// Normalise gradients implicitly by scaling m | ||||
| 		// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); | ||||
| 		m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); | ||||
|  | ||||
| 		// Compute final noise value at P | ||||
| 		tvec3<T, P> g; | ||||
| 		g.x  = a0.x  * x0.x  + h.x  * x0.y; | ||||
| 		//g.yz = a0.yz * x12.xz + h.yz * x12.yw; | ||||
| 		g.y = a0.y * x12.x + h.y * x12.y; | ||||
| 		g.z = a0.z * x12.z + h.z * x12.w; | ||||
| 		return T(130) * dot(m, g); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0); | ||||
| 		tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0); | ||||
|  | ||||
| 		// First corner | ||||
| 		tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y)))); | ||||
| 		tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x))); | ||||
|  | ||||
| 		// Other corners | ||||
| 		tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0)); | ||||
| 		tvec3<T, P> l(T(1) - g); | ||||
| 		tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y))); | ||||
| 		tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y))); | ||||
|  | ||||
| 		//   x0 = x0 - 0.0 + 0.0 * C.xxx; | ||||
| 		//   x1 = x0 - i1  + 1.0 * C.xxx; | ||||
| 		//   x2 = x0 - i2  + 2.0 * C.xxx; | ||||
| 		//   x3 = x0 - 1.0 + 3.0 * C.xxx; | ||||
| 		tvec3<T, P> x1(x0 - i1 + C.x); | ||||
| 		tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y | ||||
| 		tvec3<T, P> x3(x0 - D.y);      // -1.0+3.0*C.x = -0.5 = -D.y | ||||
|  | ||||
| 		// Permutations | ||||
| 		i = detail::mod289(i); | ||||
| 		tvec4<T, P> p(detail::permute(detail::permute(detail::permute( | ||||
| 			i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) + | ||||
| 			i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) + | ||||
| 			i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1)))); | ||||
|  | ||||
| 		// Gradients: 7x7 points over a square, mapped onto an octahedron. | ||||
| 		// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) | ||||
| 		T n_ = static_cast<T>(0.142857142857); // 1.0/7.0 | ||||
| 		tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x)); | ||||
|  | ||||
| 		tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z));  //  mod(p,7*7) | ||||
|  | ||||
| 		tvec4<T, P> x_(floor(j * ns.z)); | ||||
| 		tvec4<T, P> y_(floor(j - T(7) * x_));    // mod(j,N) | ||||
|  | ||||
| 		tvec4<T, P> x(x_ * ns.x + ns.y); | ||||
| 		tvec4<T, P> y(y_ * ns.x + ns.y); | ||||
| 		tvec4<T, P> h(T(1) - abs(x) - abs(y)); | ||||
|  | ||||
| 		tvec4<T, P> b0(x.x, x.y, y.x, y.y); | ||||
| 		tvec4<T, P> b1(x.z, x.w, y.z, y.w); | ||||
|  | ||||
| 		// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; | ||||
| 		// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; | ||||
| 		tvec4<T, P> s0(floor(b0) * T(2) + T(1)); | ||||
| 		tvec4<T, P> s1(floor(b1) * T(2) + T(1)); | ||||
| 		tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0))); | ||||
|  | ||||
| 		tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y); | ||||
| 		tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w); | ||||
|  | ||||
| 		tvec3<T, P> p0(a0.x, a0.y, h.x); | ||||
| 		tvec3<T, P> p1(a0.z, a0.w, h.y); | ||||
| 		tvec3<T, P> p2(a1.x, a1.y, h.z); | ||||
| 		tvec3<T, P> p3(a1.z, a1.w, h.w); | ||||
|  | ||||
| 		// Normalise gradients | ||||
| 		tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); | ||||
| 		p0 *= norm.x; | ||||
| 		p1 *= norm.y; | ||||
| 		p2 *= norm.z; | ||||
| 		p3 *= norm.w; | ||||
|  | ||||
| 		// Mix final noise value | ||||
| 		tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0)); | ||||
| 		m = m * m; | ||||
| 		return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec4<T, P> const C( | ||||
| 			0.138196601125011,  // (5 - sqrt(5))/20  G4 | ||||
| 			0.276393202250021,  // 2 * G4 | ||||
| 			0.414589803375032,  // 3 * G4 | ||||
| 			-0.447213595499958); // -1 + 4 * G4 | ||||
|  | ||||
| 		// (sqrt(5) - 1)/4 = F4, used once below | ||||
| 		T const F4 = static_cast<T>(0.309016994374947451); | ||||
|  | ||||
| 		// First corner | ||||
| 		tvec4<T, P> i  = floor(v + dot(v, vec4(F4))); | ||||
| 		tvec4<T, P> x0 = v -   i + dot(i, vec4(C.x)); | ||||
|  | ||||
| 		// Other corners | ||||
|  | ||||
| 		// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) | ||||
| 		tvec4<T, P> i0; | ||||
| 		tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x)); | ||||
| 		tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z)); | ||||
| 		//  i0.x = dot(isX, vec3(1.0)); | ||||
| 		//i0.x = isX.x + isX.y + isX.z; | ||||
| 		//i0.yzw = static_cast<T>(1) - isX; | ||||
| 		i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX); | ||||
| 		//  i0.y += dot(isYZ.xy, vec2(1.0)); | ||||
| 		i0.y += isYZ.x + isYZ.y; | ||||
| 		//i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y); | ||||
| 		i0.z += static_cast<T>(1) - isYZ.x; | ||||
| 		i0.w += static_cast<T>(1) - isYZ.y; | ||||
| 		i0.z += isYZ.z; | ||||
| 		i0.w += static_cast<T>(1) - isYZ.z; | ||||
|  | ||||
| 		// i0 now contains the unique values 0,1,2,3 in each channel | ||||
| 		tvec4<T, P> i3 = clamp(i0, T(0), T(1)); | ||||
| 		tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1)); | ||||
| 		tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1)); | ||||
|  | ||||
| 		//  x0 = x0 - 0.0 + 0.0 * C.xxxx | ||||
| 		//  x1 = x0 - i1  + 0.0 * C.xxxx | ||||
| 		//  x2 = x0 - i2  + 0.0 * C.xxxx | ||||
| 		//  x3 = x0 - i3  + 0.0 * C.xxxx | ||||
| 		//  x4 = x0 - 1.0 + 4.0 * C.xxxx | ||||
| 		tvec4<T, P> x1 = x0 - i1 + C.x; | ||||
| 		tvec4<T, P> x2 = x0 - i2 + C.y; | ||||
| 		tvec4<T, P> x3 = x0 - i3 + C.z; | ||||
| 		tvec4<T, P> x4 = x0 + C.w; | ||||
|  | ||||
| 		// Permutations | ||||
| 		i = mod(i, tvec4<T, P>(289));  | ||||
| 		T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); | ||||
| 		tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute( | ||||
| 			i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) + | ||||
| 			i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) + | ||||
| 			i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) + | ||||
| 			i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1))); | ||||
|  | ||||
| 		// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope | ||||
| 		// 7*7*6 = 294, which is close to the ring size 17*17 = 289. | ||||
| 		tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); | ||||
|  | ||||
| 		tvec4<T, P> p0 = gtc::grad4(j0,   ip); | ||||
| 		tvec4<T, P> p1 = gtc::grad4(j1.x, ip); | ||||
| 		tvec4<T, P> p2 = gtc::grad4(j1.y, ip); | ||||
| 		tvec4<T, P> p3 = gtc::grad4(j1.z, ip); | ||||
| 		tvec4<T, P> p4 = gtc::grad4(j1.w, ip); | ||||
|  | ||||
| 		// Normalise gradients | ||||
| 		tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); | ||||
| 		p0 *= norm.x; | ||||
| 		p1 *= norm.y; | ||||
| 		p2 *= norm.z; | ||||
| 		p3 *= norm.w; | ||||
| 		p4 *= detail::taylorInvSqrt(dot(p4, p4)); | ||||
|  | ||||
| 		// Mix contributions from the five corners | ||||
| 		tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0)); | ||||
| 		tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4)             ), tvec2<T, P>(0)); | ||||
| 		m0 = m0 * m0; | ||||
| 		m1 = m1 * m1; | ||||
| 		return T(49) *  | ||||
| 			(dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +  | ||||
| 			dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4)))); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										579
									
								
								lib/glm/gtc/packing.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										579
									
								
								lib/glm/gtc/packing.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,579 @@ | ||||
| /// @ref gtc_packing | ||||
| /// @file glm/gtc/packing.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_packing GLM_GTC_packing | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief This extension provides a set of function to convert vertors to packed | ||||
| /// formats. | ||||
| /// | ||||
| /// <glm/gtc/packing.hpp> need to be included to use these features. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "type_precision.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_packing extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_packing | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// First, converts the normalized floating-point value v into a 8-bit integer value. | ||||
| 	/// Then, the results are packed into the returned 8-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packUnorm1x8:	round(clamp(c, 0, +1) * 255.0) | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packUnorm2x8(vec2 const & v) | ||||
| 	/// @see uint32 packUnorm4x8(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint8 packUnorm1x8(float v); | ||||
|  | ||||
| 	/// Convert a single 8-bit integer to a normalized floating-point value. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackUnorm4x8: f / 255.0 | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackUnorm2x8(uint16 p) | ||||
| 	/// @see vec4 unpackUnorm4x8(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL float unpackUnorm1x8(uint8 p); | ||||
|  | ||||
| 	/// First, converts each component of the normalized floating-point value v into 8-bit integer values. | ||||
| 	/// Then, the results are packed into the returned 16-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packUnorm2x8:	round(clamp(c, 0, +1) * 255.0) | ||||
| 	/// | ||||
| 	/// The first component of the vector will be written to the least significant bits of the output; | ||||
| 	/// the last component will be written to the most significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint8 packUnorm1x8(float const & v) | ||||
| 	/// @see uint32 packUnorm4x8(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackUnorm4x8: f / 255.0 | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see float unpackUnorm1x8(uint8 v) | ||||
| 	/// @see vec4 unpackUnorm4x8(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); | ||||
| 	 | ||||
| 	/// First, converts the normalized floating-point value v into 8-bit integer value. | ||||
| 	/// Then, the results are packed into the returned 8-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion to fixed point is done as follows: | ||||
| 	/// packSnorm1x8:	round(clamp(s, -1, +1) * 127.0) | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packSnorm2x8(vec2 const & v) | ||||
| 	/// @see uint32 packSnorm4x8(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint8 packSnorm1x8(float s); | ||||
|  | ||||
| 	/// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.  | ||||
| 	/// Then, the value is converted to a normalized floating-point value to generate the returned scalar. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm1x8: clamp(f / 127.0, -1, +1) | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackSnorm2x8(uint16 p) | ||||
| 	/// @see vec4 unpackSnorm4x8(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); | ||||
| 	 | ||||
| 	/// First, converts each component of the normalized floating-point value v into 8-bit integer values. | ||||
| 	/// Then, the results are packed into the returned 16-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packSnorm2x8:	round(clamp(c, -1, +1) * 127.0) | ||||
| 	/// | ||||
| 	/// The first component of the vector will be written to the least significant bits of the output; | ||||
| 	/// the last component will be written to the most significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint8 packSnorm1x8(float const & v) | ||||
| 	/// @see uint32 packSnorm4x8(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm2x8: clamp(f / 127.0, -1, +1) | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see float unpackSnorm1x8(uint8 p) | ||||
| 	/// @see vec4 unpackSnorm4x8(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); | ||||
| 	 | ||||
| 	/// First, converts the normalized floating-point value v into a 16-bit integer value. | ||||
| 	/// Then, the results are packed into the returned 16-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packUnorm1x16:	round(clamp(c, 0, +1) * 65535.0) | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packSnorm1x16(float const & v) | ||||
| 	/// @see uint64 packSnorm4x16(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint16 packUnorm1x16(float v); | ||||
|  | ||||
| 	/// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.  | ||||
| 	/// Then, the value is converted to a normalized floating-point value to generate the returned scalar. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackUnorm1x16: f / 65535.0  | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackUnorm2x16(uint32 p) | ||||
| 	/// @see vec4 unpackUnorm4x16(uint64 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL float unpackUnorm1x16(uint16 p); | ||||
|  | ||||
| 	/// First, converts each component of the normalized floating-point value v into 16-bit integer values. | ||||
| 	/// Then, the results are packed into the returned 64-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packUnorm4x16:	round(clamp(c, 0, +1) * 65535.0) | ||||
| 	/// | ||||
| 	/// The first component of the vector will be written to the least significant bits of the output; | ||||
| 	/// the last component will be written to the most significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packUnorm1x16(float const & v) | ||||
| 	/// @see uint32 packUnorm2x16(vec2 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackUnormx4x16: f / 65535.0  | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see float unpackUnorm1x16(uint16 p) | ||||
| 	/// @see vec2 unpackUnorm2x16(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p); | ||||
|  | ||||
| 	/// First, converts the normalized floating-point value v into 16-bit integer value. | ||||
| 	/// Then, the results are packed into the returned 16-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion to fixed point is done as follows: | ||||
| 	/// packSnorm1x8:	round(clamp(s, -1, +1) * 32767.0) | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packSnorm2x16(vec2 const & v) | ||||
| 	/// @see uint64 packSnorm4x16(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint16 packSnorm1x16(float v); | ||||
|  | ||||
| 	/// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned scalar. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackSnorm2x16(uint32 p) | ||||
| 	/// @see vec4 unpackSnorm4x16(uint64 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL float unpackSnorm1x16(uint16 p); | ||||
|  | ||||
| 	/// First, converts each component of the normalized floating-point value v into 16-bit integer values. | ||||
| 	/// Then, the results are packed into the returned 64-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packSnorm2x8:	round(clamp(c, -1, +1) * 32767.0) | ||||
| 	/// | ||||
| 	/// The first component of the vector will be written to the least significant bits of the output; | ||||
| 	/// the last component will be written to the most significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packSnorm1x16(float const & v) | ||||
| 	/// @see uint32 packSnorm2x16(vec2 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see float unpackSnorm1x16(uint16 p) | ||||
| 	/// @see vec2 unpackSnorm2x16(uint32 p) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); | ||||
| 	 | ||||
| 	/// Returns an unsigned integer obtained by converting the components of a floating-point scalar | ||||
| 	/// to the 16-bit floating-point representation found in the OpenGL Specification, | ||||
| 	/// and then packing this 16-bit value into a 16-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packHalf2x16(vec2 const & v) | ||||
| 	/// @see uint64 packHalf4x16(vec4 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint16 packHalf1x16(float v); | ||||
| 	 | ||||
| 	/// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, | ||||
| 	/// interpreted as a 16-bit floating-point number according to the OpenGL Specification, | ||||
| 	/// and converting it to 32-bit floating-point values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackHalf2x16(uint32 const & v) | ||||
| 	/// @see vec4 unpackHalf4x16(uint64 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL float unpackHalf1x16(uint16 v); | ||||
|  | ||||
| 	/// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector  | ||||
| 	/// to the 16-bit floating-point representation found in the OpenGL Specification,  | ||||
| 	/// and then packing these four 16-bit values into a 64-bit unsigned integer. | ||||
| 	/// The first vector component specifies the 16 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 16 most-significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packHalf1x16(float const & v) | ||||
| 	/// @see uint32 packHalf2x16(vec2 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v); | ||||
| 	 | ||||
| 	/// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, | ||||
| 	/// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,  | ||||
| 	/// and converting them to 32-bit floating-point values. | ||||
| 	/// The first component of the vector is obtained from the 16 least-significant bits of v;  | ||||
| 	/// the forth component is obtained from the 16 most-significant bits of v. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see float unpackHalf1x16(uint16 const & v) | ||||
| 	/// @see vec2 unpackHalf2x16(uint32 const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); | ||||
|  | ||||
| 	/// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector  | ||||
| 	/// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,  | ||||
| 	/// and then packing these four values into a 32-bit unsigned integer. | ||||
| 	/// The first vector component specifies the 10 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 2 most-significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packI3x10_1x2(uvec4 const & v) | ||||
| 	/// @see uint32 packSnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see uint32 packUnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see ivec4 unpackI3x10_1x2(uint32 const & p) | ||||
| 	GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v); | ||||
|  | ||||
| 	/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.  | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packU3x10_1x2(uvec4 const & v) | ||||
| 	/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); | ||||
| 	/// @see uvec4 unpackI3x10_1x2(uint32 const & p); | ||||
| 	GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); | ||||
|  | ||||
| 	/// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector  | ||||
| 	/// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,  | ||||
| 	/// and then packing these four values into a 32-bit unsigned integer. | ||||
| 	/// The first vector component specifies the 10 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 2 most-significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packI3x10_1x2(ivec4 const & v) | ||||
| 	/// @see uint32 packSnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see uint32 packUnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see ivec4 unpackU3x10_1x2(uint32 const & p) | ||||
| 	GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v); | ||||
|  | ||||
| 	/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.  | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packU3x10_1x2(uvec4 const & v) | ||||
| 	/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); | ||||
| 	/// @see uvec4 unpackI3x10_1x2(uint32 const & p); | ||||
| 	GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); | ||||
|  | ||||
| 	/// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. | ||||
| 	/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values. | ||||
| 	/// Then, the results are packed into the returned 32-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packSnorm3x10_1x2(xyz):	round(clamp(c, -1, +1) * 511.0) | ||||
| 	/// packSnorm3x10_1x2(w):	round(clamp(c, -1, +1) * 1.0) | ||||
| 	/// | ||||
| 	/// The first vector component specifies the 10 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 2 most-significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p) | ||||
| 	/// @see uint32 packUnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see uint32 packU3x10_1x2(uvec4 const & v) | ||||
| 	/// @see uint32 packI3x10_1x2(ivec4 const & v) | ||||
| 	GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) | ||||
| 	/// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packSnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)) | ||||
| 	/// @see uvec4 unpackI3x10_1x2(uint32 const & p) | ||||
| 	/// @see uvec4 unpackU3x10_1x2(uint32 const & p) | ||||
| 	GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); | ||||
|  | ||||
| 	/// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. | ||||
| 	/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values. | ||||
| 	/// Then, the results are packed into the returned 32-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The conversion for component c of v to fixed point is done as follows: | ||||
| 	/// packUnorm3x10_1x2(xyz):	round(clamp(c, 0, +1) * 1023.0) | ||||
| 	/// packUnorm3x10_1x2(w):	round(clamp(c, 0, +1) * 3.0) | ||||
| 	/// | ||||
| 	/// The first vector component specifies the 10 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 2 most-significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p) | ||||
| 	/// @see uint32 packUnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see uint32 packU3x10_1x2(uvec4 const & v) | ||||
| 	/// @see uint32 packI3x10_1x2(ivec4 const & v) | ||||
| 	GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. | ||||
| 	///  | ||||
| 	/// The conversion for unpacked fixed-point value f to floating point is done as follows: | ||||
| 	/// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) | ||||
| 	/// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packSnorm3x10_1x2(vec4 const & v) | ||||
| 	/// @see vec4 unpackInorm3x10_1x2(uint32 const & p)) | ||||
| 	/// @see uvec4 unpackI3x10_1x2(uint32 const & p) | ||||
| 	/// @see uvec4 unpackU3x10_1x2(uint32 const & p) | ||||
| 	GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); | ||||
|  | ||||
| 	/// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. | ||||
| 	/// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. | ||||
| 	/// Then, the results are packed into the returned 32-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The first vector component specifies the 11 least-significant bits of the result;  | ||||
| 	/// the last component specifies the 10 most-significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec3 unpackF2x11_1x10(uint32 const & p) | ||||
| 	GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packF2x11_1x10(vec3 const & v) | ||||
| 	GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); | ||||
|  | ||||
|  | ||||
| 	/// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. | ||||
| 	/// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. | ||||
| 	/// Then, the results are packed into the returned 32-bit unsigned integer. | ||||
| 	/// | ||||
| 	/// The first vector component specifies the 11 least-significant bits of the result;  | ||||
| 	/// the last component specifies the 10 most-significant bits. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec3 unpackF3x9_E1x5(uint32 const & p) | ||||
| 	GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v); | ||||
|  | ||||
| 	/// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .  | ||||
| 	/// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. | ||||
| 	///  | ||||
| 	/// The first component of the returned vector will be extracted from the least significant bits of the input;  | ||||
| 	/// the last component will be extracted from the most significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint32 packF3x9_E1x5(vec3 const & v) | ||||
| 	GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); | ||||
|  | ||||
| 	/// Returns an unsigned integer vector obtained by converting the components of a floating-point vector | ||||
| 	/// to the 16-bit floating-point representation found in the OpenGL Specification. | ||||
| 	/// The first vector component specifies the 16 least-significant bits of the result;  | ||||
| 	/// the forth component specifies the 16 most-significant bits. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<float, P> unpackHalf(vecType<uint16, P> const & p) | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	template <precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<uint16, P> packHalf(vecType<float, P> const & v); | ||||
|  | ||||
| 	/// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. | ||||
| 	/// The first component of the vector is obtained from the 16 least-significant bits of v; | ||||
| 	/// the forth component is obtained from the 16 most-significant bits of v. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<uint16, P> packHalf(vecType<float, P> const & v) | ||||
| 	/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> | ||||
| 	template <precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<float, P> unpackHalf(vecType<uint16, P> const & p); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<floatType, P> unpackUnorm(vecType<intType, P> const & p); | ||||
| 	template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<uintType, P> packUnorm(vecType<floatType, P> const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<intType, P> packUnorm(vecType<floatType, P> const & v) | ||||
| 	template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into signed integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<floatType, P> unpackSnorm(vecType<intType, P> const & p); | ||||
| 	template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<intType, P> packSnorm(vecType<floatType, P> const & v); | ||||
|  | ||||
| 	/// Convert each signed integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vecType<intType, P> packSnorm(vecType<floatType, P> const & v) | ||||
| 	template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec2 unpackUnorm2x4(uint8 p) | ||||
| 	GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint8 packUnorm2x4(vec2 const & v) | ||||
| 	GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec4 unpackUnorm4x4(uint16 p) | ||||
| 	GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packUnorm4x4(vec4 const & v) | ||||
| 	GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) | ||||
| 	GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v) | ||||
| 	GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec4 unpackUnorm3x5_1x1(uint16 p) | ||||
| 	GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint16 packUnorm3x5_1x1(vec4 const & v) | ||||
| 	GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); | ||||
|  | ||||
| 	/// Convert each component of the normalized floating-point vector into unsigned integer values. | ||||
| 	/// | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see vec3 unpackUnorm2x3_1x2(uint8 p) | ||||
| 	GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v); | ||||
|  | ||||
| 	/// Convert each unsigned integer components of a vector to normalized floating-point values. | ||||
| 	///  | ||||
| 	/// @see gtc_packing | ||||
| 	/// @see uint8 packUnorm2x3_1x2(vec3 const & v) | ||||
| 	GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); | ||||
| 	/// @} | ||||
| }// namespace glm | ||||
|  | ||||
| #include "packing.inl" | ||||
							
								
								
									
										781
									
								
								lib/glm/gtc/packing.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										781
									
								
								lib/glm/gtc/packing.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,781 @@ | ||||
| /// @ref gtc_packing | ||||
| /// @file glm/gtc/packing.inl | ||||
|  | ||||
| #include "../common.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../detail/type_half.hpp" | ||||
| #include <cstring> | ||||
| #include <limits> | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f) | ||||
| 	{ | ||||
| 		// 10 bits    =>                         EE EEEFFFFF | ||||
| 		// 11 bits    =>                        EEE EEFFFFFF | ||||
| 		// Half bits  =>                   SEEEEEFF FFFFFFFF | ||||
| 		// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF | ||||
|  | ||||
| 		// 0x00007c00 => 00000000 00000000 01111100 00000000 | ||||
| 		// 0x000003ff => 00000000 00000000 00000011 11111111 | ||||
| 		// 0x38000000 => 00111000 00000000 00000000 00000000 | ||||
| 		// 0x7f800000 => 01111111 10000000 00000000 00000000 | ||||
| 		// 0x00008000 => 00000000 00000000 10000000 00000000 | ||||
| 		return | ||||
| 			((f >> 16) & 0x8000) | // sign | ||||
| 			((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential | ||||
| 			((f >> 13) & 0x03ff); // Mantissa | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f) | ||||
| 	{ | ||||
| 		// 10 bits    =>                         EE EEEFFFFF | ||||
| 		// 11 bits    =>                        EEE EEFFFFFF | ||||
| 		// Half bits  =>                   SEEEEEFF FFFFFFFF | ||||
| 		// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF | ||||
|  | ||||
| 		// 0x000007c0 => 00000000 00000000 00000111 11000000 | ||||
| 		// 0x00007c00 => 00000000 00000000 01111100 00000000 | ||||
| 		// 0x000003ff => 00000000 00000000 00000011 11111111 | ||||
| 		// 0x38000000 => 00111000 00000000 00000000 00000000 | ||||
| 		// 0x7f800000 => 01111111 10000000 00000000 00000000 | ||||
| 		// 0x00008000 => 00000000 00000000 10000000 00000000 | ||||
| 		return | ||||
| 			((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential | ||||
| 			((f >> 17) & 0x003f); // Mantissa | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p) | ||||
| 	{ | ||||
| 		// 10 bits    =>                         EE EEEFFFFF | ||||
| 		// 11 bits    =>                        EEE EEFFFFFF | ||||
| 		// Half bits  =>                   SEEEEEFF FFFFFFFF | ||||
| 		// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF | ||||
|  | ||||
| 		// 0x000007c0 => 00000000 00000000 00000111 11000000 | ||||
| 		// 0x00007c00 => 00000000 00000000 01111100 00000000 | ||||
| 		// 0x000003ff => 00000000 00000000 00000011 11111111 | ||||
| 		// 0x38000000 => 00111000 00000000 00000000 00000000 | ||||
| 		// 0x7f800000 => 01111111 10000000 00000000 00000000 | ||||
| 		// 0x00008000 => 00000000 00000000 10000000 00000000 | ||||
| 		return | ||||
| 			((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential | ||||
| 			((p & 0x003f) << 17); // Mantissa | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f) | ||||
| 	{ | ||||
| 		// 10 bits    =>                         EE EEEFFFFF | ||||
| 		// 11 bits    =>                        EEE EEFFFFFF | ||||
| 		// Half bits  =>                   SEEEEEFF FFFFFFFF | ||||
| 		// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF | ||||
|  | ||||
| 		// 0x0000001F => 00000000 00000000 00000000 00011111 | ||||
| 		// 0x0000003F => 00000000 00000000 00000000 00111111 | ||||
| 		// 0x000003E0 => 00000000 00000000 00000011 11100000 | ||||
| 		// 0x000007C0 => 00000000 00000000 00000111 11000000 | ||||
| 		// 0x00007C00 => 00000000 00000000 01111100 00000000 | ||||
| 		// 0x000003FF => 00000000 00000000 00000011 11111111 | ||||
| 		// 0x38000000 => 00111000 00000000 00000000 00000000 | ||||
| 		// 0x7f800000 => 01111111 10000000 00000000 00000000 | ||||
| 		// 0x00008000 => 00000000 00000000 10000000 00000000 | ||||
| 		return | ||||
| 			((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential | ||||
| 			((f >> 18) & 0x001f); // Mantissa | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p) | ||||
| 	{ | ||||
| 		// 10 bits    =>                         EE EEEFFFFF | ||||
| 		// 11 bits    =>                        EEE EEFFFFFF | ||||
| 		// Half bits  =>                   SEEEEEFF FFFFFFFF | ||||
| 		// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF | ||||
|  | ||||
| 		// 0x0000001F => 00000000 00000000 00000000 00011111 | ||||
| 		// 0x0000003F => 00000000 00000000 00000000 00111111 | ||||
| 		// 0x000003E0 => 00000000 00000000 00000011 11100000 | ||||
| 		// 0x000007C0 => 00000000 00000000 00000111 11000000 | ||||
| 		// 0x00007C00 => 00000000 00000000 01111100 00000000 | ||||
| 		// 0x000003FF => 00000000 00000000 00000011 11111111 | ||||
| 		// 0x38000000 => 00111000 00000000 00000000 00000000 | ||||
| 		// 0x7f800000 => 01111111 10000000 00000000 00000000 | ||||
| 		// 0x00008000 => 00000000 00000000 10000000 00000000 | ||||
| 		return | ||||
| 			((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential | ||||
| 			((p & 0x001f) << 18); // Mantissa | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h) | ||||
| 	{ | ||||
| 		return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x) | ||||
| 	{ | ||||
| 		if(x == 0.0f) | ||||
| 			return 0u; | ||||
| 		else if(glm::isnan(x)) | ||||
| 			return ~0u; | ||||
| 		else if(glm::isinf(x)) | ||||
| 			return 0x1Fu << 6u; | ||||
|  | ||||
| 		uint Pack = 0u; | ||||
| 		memcpy(&Pack, &x, sizeof(Pack)); | ||||
| 		return float2packed11(Pack); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x) | ||||
| 	{ | ||||
| 		if(x == 0) | ||||
| 			return 0.0f; | ||||
| 		else if(x == ((1 << 11) - 1)) | ||||
| 			return ~0;//NaN | ||||
| 		else if(x == (0x1f << 6)) | ||||
| 			return ~0;//Inf | ||||
|  | ||||
| 		uint Result = packed11ToFloat(x); | ||||
|  | ||||
| 		float Temp = 0; | ||||
| 		memcpy(&Temp, &Result, sizeof(Temp)); | ||||
| 		return Temp; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x) | ||||
| 	{ | ||||
| 		if(x == 0.0f) | ||||
| 			return 0u; | ||||
| 		else if(glm::isnan(x)) | ||||
| 			return ~0u; | ||||
| 		else if(glm::isinf(x)) | ||||
| 			return 0x1Fu << 5u; | ||||
|  | ||||
| 		uint Pack = 0; | ||||
| 		memcpy(&Pack, &x, sizeof(Pack)); | ||||
| 		return float2packed10(Pack); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x) | ||||
| 	{ | ||||
| 		if(x == 0) | ||||
| 			return 0.0f; | ||||
| 		else if(x == ((1 << 10) - 1)) | ||||
| 			return ~0;//NaN | ||||
| 		else if(x == (0x1f << 5)) | ||||
| 			return ~0;//Inf | ||||
|  | ||||
| 		uint Result = packed10ToFloat(x); | ||||
|  | ||||
| 		float Temp = 0; | ||||
| 		memcpy(&Temp, &Result, sizeof(Temp)); | ||||
| 		return Temp; | ||||
| 	} | ||||
|  | ||||
| //	GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z) | ||||
| //	{ | ||||
| //		return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) |  ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22); | ||||
| //	} | ||||
|  | ||||
| 	union u3u3u2 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 3; | ||||
| 			uint y : 3; | ||||
| 			uint z : 2; | ||||
| 		} data; | ||||
| 		uint8 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u4u4 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 4; | ||||
| 			uint y : 4; | ||||
| 		} data; | ||||
| 		uint8 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u4u4u4u4 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 4; | ||||
| 			uint y : 4; | ||||
| 			uint z : 4; | ||||
| 			uint w : 4; | ||||
| 		} data; | ||||
| 		uint16 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u5u6u5 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 5; | ||||
| 			uint y : 6; | ||||
| 			uint z : 5; | ||||
| 		} data; | ||||
| 		uint16 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u5u5u5u1 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 5; | ||||
| 			uint y : 5; | ||||
| 			uint z : 5; | ||||
| 			uint w : 1; | ||||
| 		} data; | ||||
| 		uint16 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u10u10u10u2 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 10; | ||||
| 			uint y : 10; | ||||
| 			uint z : 10; | ||||
| 			uint w : 2; | ||||
| 		} data; | ||||
| 		uint32 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union i10i10i10i2 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			int x : 10; | ||||
| 			int y : 10; | ||||
| 			int z : 10; | ||||
| 			int w : 2; | ||||
| 		} data; | ||||
| 		uint32 pack; | ||||
| 	}; | ||||
|  | ||||
| 	union u9u9u9e5 | ||||
| 	{ | ||||
| 		struct | ||||
| 		{ | ||||
| 			uint x : 9; | ||||
| 			uint y : 9; | ||||
| 			uint z : 9; | ||||
| 			uint w : 5; | ||||
| 		} data; | ||||
| 		uint32 pack; | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <typename, precision> class vecType> | ||||
| 	struct compute_half | ||||
| 	{}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_half<P, tvec1> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec1<uint16, P> pack(tvec1<float, P> const & v) | ||||
| 		{ | ||||
| 			int16 const Unpack(detail::toFloat16(v.x)); | ||||
| 			u16vec1 Packed(uninitialize); | ||||
| 			memcpy(&Packed, &Unpack, sizeof(Packed)); | ||||
| 			return Packed; | ||||
| 		} | ||||
|  | ||||
| 		GLM_FUNC_QUALIFIER static tvec1<float, P> unpack(tvec1<uint16, P> const & v) | ||||
| 		{ | ||||
| 			i16vec1 Unpack(uninitialize); | ||||
| 			memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 			return tvec1<float, P>(detail::toFloat32(v.x)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_half<P, tvec2> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec2<uint16, P> pack(tvec2<float, P> const & v) | ||||
| 		{ | ||||
| 			tvec2<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); | ||||
| 			u16vec2 Packed(uninitialize); | ||||
| 			memcpy(&Packed, &Unpack, sizeof(Packed)); | ||||
| 			return Packed; | ||||
| 		} | ||||
|  | ||||
| 		GLM_FUNC_QUALIFIER static tvec2<float, P> unpack(tvec2<uint16, P> const & v) | ||||
| 		{ | ||||
| 			i16vec2 Unpack(uninitialize); | ||||
| 			memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 			return tvec2<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_half<P, tvec3> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec3<uint16, P> pack(tvec3<float, P> const & v) | ||||
| 		{ | ||||
| 			tvec3<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); | ||||
| 			u16vec3 Packed(uninitialize); | ||||
| 			memcpy(&Packed, &Unpack, sizeof(Packed)); | ||||
| 			return Packed; | ||||
| 		} | ||||
|  | ||||
| 		GLM_FUNC_QUALIFIER static tvec3<float, P> unpack(tvec3<uint16, P> const & v) | ||||
| 		{ | ||||
| 			i16vec3 Unpack(uninitialize); | ||||
| 			memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 			return tvec3<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_half<P, tvec4> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec4<uint16, P> pack(tvec4<float, P> const & v) | ||||
| 		{ | ||||
| 			tvec4<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); | ||||
| 			u16vec4 Packed(uninitialize); | ||||
| 			memcpy(&Packed, &Unpack, sizeof(Packed)); | ||||
| 			return Packed; | ||||
| 		} | ||||
|  | ||||
| 		GLM_FUNC_QUALIFIER static tvec4<float, P> unpack(tvec4<uint16, P> const & v) | ||||
| 		{ | ||||
| 			i16vec4 Unpack(uninitialize); | ||||
| 			memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 			return tvec4<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v) | ||||
| 	{ | ||||
| 		return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f)); | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) | ||||
| 	{ | ||||
| 		float const Unpack(p); | ||||
| 		return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255 | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) | ||||
| 	{ | ||||
| 		u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); | ||||
|  | ||||
| 		uint16 Unpack = 0; | ||||
| 		memcpy(&Unpack, &Topack, sizeof(Unpack)); | ||||
| 		return Unpack; | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) | ||||
| 	{ | ||||
| 		u8vec2 Unpack(uninitialize); | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v) | ||||
| 	{ | ||||
| 		int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f))); | ||||
| 		uint8 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) | ||||
| 	{ | ||||
| 		int8 Unpack = 0; | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return clamp( | ||||
| 			static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f | ||||
| 			-1.0f, 1.0f); | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) | ||||
| 	{ | ||||
| 		i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); | ||||
| 		uint16 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
| 	 | ||||
| 	GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) | ||||
| 	{ | ||||
| 		i8vec2 Unpack(uninitialize); | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return clamp( | ||||
| 			vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f | ||||
| 			-1.0f, 1.0f); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s) | ||||
| 	{ | ||||
| 		return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f)); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p) | ||||
| 	{ | ||||
| 		float const Unpack(p); | ||||
| 		return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) | ||||
| 	{ | ||||
| 		u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); | ||||
| 		uint64 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) | ||||
| 	{ | ||||
| 		u16vec4 Unpack(uninitialize); | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v) | ||||
| 	{ | ||||
| 		int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); | ||||
| 		uint16 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p) | ||||
| 	{ | ||||
| 		int16 Unpack = 0; | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return clamp( | ||||
| 			static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,  | ||||
| 			-1.0f, 1.0f); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) | ||||
| 	{ | ||||
| 		i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); | ||||
| 		uint64 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) | ||||
| 	{ | ||||
| 		i16vec4 Unpack(uninitialize); | ||||
| 		memcpy(&Unpack, &p, sizeof(Unpack)); | ||||
| 		return clamp( | ||||
| 			vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, | ||||
| 			-1.0f, 1.0f); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v) | ||||
| 	{ | ||||
| 		int16 const Topack(detail::toFloat16(v)); | ||||
| 		uint16 Packed = 0; | ||||
| 		memcpy(&Packed, &Topack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v) | ||||
| 	{ | ||||
| 		int16 Unpack = 0; | ||||
| 		memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 		return detail::toFloat32(Unpack); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) | ||||
| 	{ | ||||
| 		i16vec4 const Unpack( | ||||
| 			detail::toFloat16(v.x), | ||||
| 			detail::toFloat16(v.y), | ||||
| 			detail::toFloat16(v.z), | ||||
| 			detail::toFloat16(v.w)); | ||||
| 		uint64 Packed = 0; | ||||
| 		memcpy(&Packed, &Unpack, sizeof(Packed)); | ||||
| 		return Packed; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) | ||||
| 	{ | ||||
| 		i16vec4 Unpack(uninitialize); | ||||
| 		memcpy(&Unpack, &v, sizeof(Unpack)); | ||||
| 		return vec4( | ||||
| 			detail::toFloat32(Unpack.x), | ||||
| 			detail::toFloat32(Unpack.y), | ||||
| 			detail::toFloat32(Unpack.z), | ||||
| 			detail::toFloat32(Unpack.w)); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) | ||||
| 	{ | ||||
| 		detail::i10i10i10i2 Result; | ||||
| 		Result.data.x = v.x; | ||||
| 		Result.data.y = v.y; | ||||
| 		Result.data.z = v.z; | ||||
| 		Result.data.w = v.w; | ||||
| 		return Result.pack;  | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) | ||||
| 	{ | ||||
| 		detail::i10i10i10i2 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return ivec4( | ||||
| 			Unpack.data.x, | ||||
| 			Unpack.data.y, | ||||
| 			Unpack.data.z, | ||||
| 			Unpack.data.w); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) | ||||
| 	{ | ||||
| 		detail::u10u10u10u2 Result; | ||||
| 		Result.data.x = v.x; | ||||
| 		Result.data.y = v.y; | ||||
| 		Result.data.z = v.z; | ||||
| 		Result.data.w = v.w; | ||||
| 		return Result.pack;  | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) | ||||
| 	{ | ||||
| 		detail::u10u10u10u2 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return uvec4( | ||||
| 			Unpack.data.x, | ||||
| 			Unpack.data.y, | ||||
| 			Unpack.data.z, | ||||
| 			Unpack.data.w); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) | ||||
| 	{ | ||||
| 		detail::i10i10i10i2 Result; | ||||
| 		Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); | ||||
| 		Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); | ||||
| 		Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); | ||||
| 		Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) *   1.f)); | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v) | ||||
| 	{ | ||||
| 		detail::i10i10i10i2 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		vec4 Result; | ||||
| 		Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); | ||||
| 		Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); | ||||
| 		Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); | ||||
| 		Result.w = clamp(float(Unpack.data.w) /   1.f, -1.0f, 1.0f); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) | ||||
| 	{ | ||||
| 		uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); | ||||
|  | ||||
| 		detail::u10u10u10u2 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		Result.data.z = Unpack.z; | ||||
| 		Result.data.w = Unpack.w; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v) | ||||
| 	{ | ||||
| 		vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f); | ||||
|  | ||||
| 		detail::u10u10u10u2 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) | ||||
| 	{ | ||||
| 		return | ||||
| 			((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) <<  0) | | ||||
| 			((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) | | ||||
| 			((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v) | ||||
| 	{ | ||||
| 		return vec3( | ||||
| 			detail::packed11bitToFloat(v >> 0), | ||||
| 			detail::packed11bitToFloat(v >> 11), | ||||
| 			detail::packed10bitToFloat(v >> 22)); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v) | ||||
| 	{ | ||||
| 		float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); | ||||
| 		vec3 const Color = clamp(v, 0.0f, SharedExpMax); | ||||
| 		float const MaxColor = max(Color.x, max(Color.y, Color.z)); | ||||
|  | ||||
| 		float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; | ||||
| 		float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 15.f - 9.f)) + 0.5f); | ||||
| 		float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP; | ||||
|  | ||||
| 		uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); | ||||
|  | ||||
| 		detail::u9u9u9e5 Unpack; | ||||
| 		Unpack.data.x = ColorComp.x; | ||||
| 		Unpack.data.y = ColorComp.y; | ||||
| 		Unpack.data.z = ColorComp.z; | ||||
| 		Unpack.data.w = uint(ExpShared); | ||||
| 		return Unpack.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v) | ||||
| 	{ | ||||
| 		detail::u9u9u9e5 Unpack; | ||||
| 		Unpack.pack = v; | ||||
|  | ||||
| 		return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); | ||||
| 	} | ||||
|  | ||||
| 	template <precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<uint16, P> packHalf(vecType<float, P> const & v) | ||||
| 	{ | ||||
| 		return detail::compute_half<P, vecType>::pack(v); | ||||
| 	} | ||||
|  | ||||
| 	template <precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<float, P> unpackHalf(vecType<uint16, P> const & v) | ||||
| 	{ | ||||
| 		return detail::compute_half<P, vecType>::unpack(v); | ||||
| 	} | ||||
|  | ||||
| 	template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<uintType, P> packUnorm(vecType<floatType, P> const & v) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); | ||||
|  | ||||
| 		return vecType<uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max()))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); | ||||
|  | ||||
| 		return vecType<float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max())); | ||||
| 	} | ||||
|  | ||||
| 	template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<intType, P> packSnorm(vecType<floatType, P> const & v) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); | ||||
|  | ||||
| 		return vecType<intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max()))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); | ||||
|  | ||||
| 		return clamp(vecType<floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1)); | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v) | ||||
| 	{ | ||||
| 		u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); | ||||
| 		detail::u4u4 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v) | ||||
| 	{ | ||||
| 		float const ScaleFactor(1.f / 15.f); | ||||
| 		detail::u4u4 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v) | ||||
| 	{ | ||||
| 		u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); | ||||
| 		detail::u4u4u4u4 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		Result.data.z = Unpack.z; | ||||
| 		Result.data.w = Unpack.w; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v) | ||||
| 	{ | ||||
| 		float const ScaleFactor(1.f / 15.f); | ||||
| 		detail::u4u4u4u4 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v) | ||||
| 	{ | ||||
| 		u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); | ||||
| 		detail::u5u6u5 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		Result.data.z = Unpack.z; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v) | ||||
| 	{ | ||||
| 		vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f); | ||||
| 		detail::u5u6u5 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v) | ||||
| 	{ | ||||
| 		u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); | ||||
| 		detail::u5u5u5u1 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		Result.data.z = Unpack.z; | ||||
| 		Result.data.w = Unpack.w; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v) | ||||
| 	{ | ||||
| 		vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f); | ||||
| 		detail::u5u5u5u1 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v) | ||||
| 	{ | ||||
| 		u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); | ||||
| 		detail::u3u3u2 Result; | ||||
| 		Result.data.x = Unpack.x; | ||||
| 		Result.data.y = Unpack.y; | ||||
| 		Result.data.z = Unpack.z; | ||||
| 		return Result.pack; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v) | ||||
| 	{ | ||||
| 		vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f); | ||||
| 		detail::u3u3u2 Unpack; | ||||
| 		Unpack.pack = v; | ||||
| 		return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; | ||||
| 	} | ||||
| }//namespace glm | ||||
|  | ||||
							
								
								
									
										397
									
								
								lib/glm/gtc/quaternion.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										397
									
								
								lib/glm/gtc/quaternion.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,397 @@ | ||||
| /// @ref gtc_quaternion | ||||
| /// @file glm/gtc/quaternion.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtc_constants (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_quaternion GLM_GTC_quaternion | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Defines a templated quaternion type and several quaternion operations. | ||||
| /// | ||||
| /// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../mat3x3.hpp" | ||||
| #include "../mat4x4.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../gtc/constants.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_quaternion extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_quaternion | ||||
| 	/// @{ | ||||
|  | ||||
| 	template <typename T, precision P = defaultp> | ||||
| 	struct tquat | ||||
| 	{ | ||||
| 		// -- Implementation detail -- | ||||
|  | ||||
| 		typedef tquat<T, P> type; | ||||
| 		typedef T value_type; | ||||
|  | ||||
| 		// -- Data -- | ||||
|  | ||||
| #		if GLM_HAS_ALIGNED_TYPE | ||||
| #			if GLM_COMPILER & GLM_COMPILER_GCC | ||||
| #				pragma GCC diagnostic push | ||||
| #				pragma GCC diagnostic ignored "-Wpedantic" | ||||
| #			endif | ||||
| #			if GLM_COMPILER & GLM_COMPILER_CLANG | ||||
| #				pragma clang diagnostic push | ||||
| #				pragma clang diagnostic ignored "-Wgnu-anonymous-struct" | ||||
| #				pragma clang diagnostic ignored "-Wnested-anon-types" | ||||
| #			endif | ||||
| 		 | ||||
| 			union | ||||
| 			{ | ||||
| 				struct { T x, y, z, w;}; | ||||
| 				typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; | ||||
| 			}; | ||||
| 		 | ||||
| #			if GLM_COMPILER & GLM_COMPILER_CLANG | ||||
| #				pragma clang diagnostic pop | ||||
| #			endif | ||||
| #			if GLM_COMPILER & GLM_COMPILER_GCC | ||||
| #				pragma GCC diagnostic pop | ||||
| #			endif | ||||
| #		else | ||||
| 			T x, y, z, w; | ||||
| #		endif | ||||
|  | ||||
| 		// -- Component accesses -- | ||||
|  | ||||
| 		typedef length_t length_type; | ||||
| 		/// Return the count of components of a quaternion | ||||
| 		GLM_FUNC_DECL static length_type length(){return 4;} | ||||
|  | ||||
| 		GLM_FUNC_DECL T & operator[](length_type i); | ||||
| 		GLM_FUNC_DECL T const & operator[](length_type i) const; | ||||
|  | ||||
| 		// -- Implicit basic constructors -- | ||||
|  | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; | ||||
| 		template <precision Q> | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); | ||||
|  | ||||
| 		// -- Explicit basic constructors -- | ||||
|  | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); | ||||
|  | ||||
| 		// -- Conversion constructors -- | ||||
|  | ||||
| 		template <typename U, precision Q> | ||||
| 		GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); | ||||
|  | ||||
| 		/// Explicit conversion operators | ||||
| #		if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | ||||
| 			GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); | ||||
| 			GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); | ||||
| #		endif | ||||
|  | ||||
| 		/// Create a quaternion from two normalized axis | ||||
| 		/// | ||||
| 		/// @param u A first normalized axis | ||||
| 		/// @param v A second normalized axis | ||||
| 		/// @see gtc_quaternion | ||||
| 		/// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors | ||||
| 		GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); | ||||
|  | ||||
| 		/// Build a quaternion from euler angles (pitch, yaw, roll), in radians. | ||||
| 		GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); | ||||
| 		GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); | ||||
| 		GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); | ||||
|  | ||||
| 		// -- Unary arithmetic operators -- | ||||
|  | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; | ||||
|  | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator*=(U s); | ||||
| 		template <typename U> | ||||
| 		GLM_FUNC_DECL tquat<T, P> & operator/=(U s); | ||||
| 	}; | ||||
|  | ||||
| 	// -- Unary bit operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); | ||||
|  | ||||
| 	// -- Binary operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); | ||||
|  | ||||
| 	// -- Boolean operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); | ||||
|  | ||||
| 	/// Returns the length of the quaternion. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T length(tquat<T, P> const & q); | ||||
|  | ||||
| 	/// Returns the normalized quaternion. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); | ||||
| 		 | ||||
| 	/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P, template <typename, precision> class quatType> | ||||
| 	GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); | ||||
|  | ||||
| 	/// Spherical linear interpolation of two quaternions. | ||||
| 	/// The interpolation is oriented and the rotation is performed at constant speed. | ||||
| 	/// For short path spherical linear interpolation, use the slerp function. | ||||
| 	///  | ||||
| 	/// @param x A quaternion | ||||
| 	/// @param y A quaternion | ||||
| 	/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. | ||||
| 	/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | ||||
| 	/// @see gtc_quaternion | ||||
| 	/// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); | ||||
|  | ||||
| 	/// Linear interpolation of two quaternions. | ||||
| 	/// The interpolation is oriented. | ||||
| 	///  | ||||
| 	/// @param x A quaternion | ||||
| 	/// @param y A quaternion | ||||
| 	/// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. | ||||
| 	/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); | ||||
|  | ||||
| 	/// Spherical linear interpolation of two quaternions. | ||||
| 	/// The interpolation always take the short path and the rotation is performed at constant speed. | ||||
| 	///  | ||||
| 	/// @param x A quaternion | ||||
| 	/// @param y A quaternion | ||||
| 	/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. | ||||
| 	/// @tparam T Value type used to build the quaternion. Supported: half, float or double. | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); | ||||
|  | ||||
| 	/// Returns the q conjugate. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); | ||||
|  | ||||
| 	/// Returns the q inverse. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); | ||||
|  | ||||
| 	/// Rotates a quaternion from a vector of 3 components axis and an angle. | ||||
| 	///  | ||||
| 	/// @param q Source orientation | ||||
| 	/// @param angle Angle expressed in radians. | ||||
| 	/// @param axis Axis of the rotation | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); | ||||
|  | ||||
| 	/// Returns euler angles, pitch as x, yaw as y, roll as z. | ||||
| 	/// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Returns roll value of euler angles expressed in radians. | ||||
| 	/// | ||||
| 	/// @see gtx_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T roll(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Returns pitch value of euler angles expressed in radians. | ||||
| 	/// | ||||
| 	/// @see gtx_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T pitch(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Returns yaw value of euler angles expressed in radians. | ||||
| 	/// | ||||
| 	/// @see gtx_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T yaw(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Converts a quaternion to a 3 * 3 matrix. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Converts a quaternion to a 4 * 4 matrix. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Converts a 3 * 3 matrix to a quaternion. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); | ||||
|  | ||||
| 	/// Converts a 4 * 4 matrix to a quaternion. | ||||
| 	///  | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); | ||||
|  | ||||
| 	/// Returns the quaternion rotation angle. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL T angle(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Returns the q rotation axis. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Build a quaternion from an angle and a normalized axis. | ||||
| 	/// | ||||
| 	/// @param angle Angle expressed in radians. | ||||
| 	/// @param axis Axis of the quaternion, must be normalized. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); | ||||
|  | ||||
| 	/// Returns the component-wise comparison result of x < y. | ||||
| 	///  | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of result x <= y. | ||||
| 	/// | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of result x > y. | ||||
| 	/// | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of result x >= y. | ||||
| 	/// | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of result x == y. | ||||
| 	/// | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns the component-wise comparison of result x != y. | ||||
| 	///  | ||||
| 	/// @tparam quatType Floating-point quaternion types. | ||||
| 	/// | ||||
| 	/// @see gtc_quaternion | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); | ||||
|  | ||||
| 	/// Returns true if x holds a NaN (not a number) | ||||
| 	/// representation in the underlying implementation's set of | ||||
| 	/// floating point representations. Returns false otherwise, | ||||
| 	/// including for implementations with no NaN | ||||
| 	/// representations. | ||||
| 	///  | ||||
| 	/// /!\ When using compiler fast math, this function may fail. | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// Returns true if x holds a positive infinity or negative | ||||
| 	/// infinity representation in the underlying implementation's | ||||
| 	/// set of floating point representations. Returns false | ||||
| 	/// otherwise, including for implementations with no infinity | ||||
| 	/// representations. | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "quaternion.inl" | ||||
							
								
								
									
										795
									
								
								lib/glm/gtc/quaternion.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										795
									
								
								lib/glm/gtc/quaternion.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,795 @@ | ||||
| /// @ref gtc_quaternion | ||||
| /// @file glm/gtc/quaternion.inl | ||||
|  | ||||
| #include "../trigonometric.hpp" | ||||
| #include "../geometric.hpp" | ||||
| #include "../exponential.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_dot<tquat, T, P, Aligned> | ||||
| 	{ | ||||
| 		static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) | ||||
| 		{ | ||||
| 			tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); | ||||
| 			return (tmp.x + tmp.y) + (tmp.z + tmp.w); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_quat_add | ||||
| 	{ | ||||
| 		static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) | ||||
| 		{ | ||||
| 			return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_quat_sub | ||||
| 	{ | ||||
| 		static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) | ||||
| 		{ | ||||
| 			return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_quat_mul_scalar | ||||
| 	{ | ||||
| 		static tquat<T, P> call(tquat<T, P> const& q, T s) | ||||
| 		{ | ||||
| 			return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_quat_div_scalar | ||||
| 	{ | ||||
| 		static tquat<T, P> call(tquat<T, P> const& q, T s) | ||||
| 		{ | ||||
| 			return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, bool Aligned> | ||||
| 	struct compute_quat_mul_vec4 | ||||
| 	{ | ||||
| 		static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) | ||||
| 		{ | ||||
| 			return tvec4<T, P>(q * tvec3<T, P>(v), v.w); | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
|  | ||||
| 	// -- Component accesses -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) | ||||
| 	{ | ||||
| 		assert(i >= 0 && i < this->length()); | ||||
| 		return (&x)[i]; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const | ||||
| 	{ | ||||
| 		assert(i >= 0 && i < this->length()); | ||||
| 		return (&x)[i]; | ||||
| 	} | ||||
|  | ||||
| 	// -- Implicit basic constructors -- | ||||
|  | ||||
| #	if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) | ||||
| 		template <typename T, precision P> | ||||
| 		GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() | ||||
| #			ifndef GLM_FORCE_NO_CTOR_INIT | ||||
| 				: x(0), y(0), z(0), w(1) | ||||
| #			endif | ||||
| 		{} | ||||
| #	endif | ||||
|  | ||||
| #	if !GLM_HAS_DEFAULTED_FUNCTIONS | ||||
| 		template <typename T, precision P> | ||||
| 		GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) | ||||
| 			: x(q.x), y(q.y), z(q.z), w(q.w) | ||||
| 		{} | ||||
| #	endif//!GLM_HAS_DEFAULTED_FUNCTIONS | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <precision Q> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) | ||||
| 		: x(q.x), y(q.y), z(q.z), w(q.w) | ||||
| 	{} | ||||
|  | ||||
| 	// -- Explicit basic constructors -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) | ||||
| 	{} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) | ||||
| 		: x(v.x), y(v.y), z(v.z), w(s) | ||||
| 	{} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) | ||||
| 		: x(x), y(y), z(z), w(w) | ||||
| 	{} | ||||
|  | ||||
| 	// -- Conversion constructors -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U, precision Q> | ||||
| 	GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) | ||||
| 		: x(static_cast<T>(q.x)) | ||||
| 		, y(static_cast<T>(q.y)) | ||||
| 		, z(static_cast<T>(q.z)) | ||||
| 		, w(static_cast<T>(q.w)) | ||||
| 	{} | ||||
|  | ||||
| 	//template <typename valType>  | ||||
| 	//GLM_FUNC_QUALIFIER tquat<valType>::tquat | ||||
| 	//( | ||||
| 	//	valType const & pitch, | ||||
| 	//	valType const & yaw, | ||||
| 	//	valType const & roll | ||||
| 	//) | ||||
| 	//{ | ||||
| 	//	tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); | ||||
| 	//	tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); | ||||
| 	//	tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); | ||||
| 	//	 | ||||
| 	//	this->w = c.x * c.y * c.z + s.x * s.y * s.z; | ||||
| 	//	this->x = s.x * c.y * c.z - c.x * s.y * s.z; | ||||
| 	//	this->y = c.x * s.y * c.z + s.x * c.y * s.z; | ||||
| 	//	this->z = c.x * c.y * s.z - s.x * s.y * c.z; | ||||
| 	//} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec3<T, P> const LocalW(cross(u, v)); | ||||
| 		T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); | ||||
| 		tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); | ||||
|  | ||||
| 		*this = normalize(q); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) | ||||
| 	{ | ||||
| 		tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); | ||||
| 		tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); | ||||
| 		 | ||||
| 		this->w = c.x * c.y * c.z + s.x * s.y * s.z; | ||||
| 		this->x = s.x * c.y * c.z - c.x * s.y * s.z; | ||||
| 		this->y = c.x * s.y * c.z + s.x * c.y * s.z; | ||||
| 		this->z = c.x * c.y * s.z - s.x * s.y * c.z; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) | ||||
| 	{ | ||||
| 		*this = quat_cast(m); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) | ||||
| 	{ | ||||
| 		*this = quat_cast(m); | ||||
| 	} | ||||
|  | ||||
| #	if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() | ||||
| 	{ | ||||
| 		return mat3_cast(*this); | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T, precision P>	 | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() | ||||
| 	{ | ||||
| 		return mat4_cast(*this); | ||||
| 	} | ||||
| #	endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return tquat<T, P>(q.w, -q.x, -q.y, -q.z); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return conjugate(q) / dot(q, q); | ||||
| 	} | ||||
|  | ||||
| 	// -- Unary arithmetic operators -- | ||||
|  | ||||
| #	if !GLM_HAS_DEFAULTED_FUNCTIONS | ||||
| 		template <typename T, precision P> | ||||
| 		GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) | ||||
| 		{ | ||||
| 			this->w = q.w; | ||||
| 			this->x = q.x; | ||||
| 			this->y = q.y; | ||||
| 			this->z = q.z; | ||||
| 			return *this; | ||||
| 		} | ||||
| #	endif//!GLM_HAS_DEFAULTED_FUNCTIONS | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) | ||||
| 	{ | ||||
| 		this->w = static_cast<T>(q.w); | ||||
| 		this->x = static_cast<T>(q.x); | ||||
| 		this->y = static_cast<T>(q.y); | ||||
| 		this->z = static_cast<T>(q.z); | ||||
| 		return *this; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) | ||||
| 	{ | ||||
| 		return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) | ||||
| 	{ | ||||
| 		return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) | ||||
| 	{ | ||||
| 		tquat<T, P> const p(*this); | ||||
| 		tquat<T, P> const q(r); | ||||
|  | ||||
| 		this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; | ||||
| 		this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; | ||||
| 		this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; | ||||
| 		this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; | ||||
| 		return *this; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) | ||||
| 	{ | ||||
| 		return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	template <typename U> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) | ||||
| 	{ | ||||
| 		return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); | ||||
| 	} | ||||
|  | ||||
| 	// -- Unary bit operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return q; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); | ||||
| 	} | ||||
|  | ||||
| 	// -- Binary operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q,	tquat<T, P> const & p) | ||||
| 	{ | ||||
| 		return tquat<T, P>(q) += p; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q,	tquat<T, P> const & p) | ||||
| 	{ | ||||
| 		return tquat<T, P>(q) *= p; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q,	tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec3<T, P> const QuatVector(q.x, q.y, q.z); | ||||
| 		tvec3<T, P> const uv(glm::cross(QuatVector, v)); | ||||
| 		tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); | ||||
|  | ||||
| 		return v + ((uv * q.w) + uuv) * static_cast<T>(2); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return glm::inverse(q) * v; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) | ||||
| 	{ | ||||
| 		return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return glm::inverse(q) * v; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) | ||||
| 	{ | ||||
| 		return tquat<T, P>( | ||||
| 			q.w * s, q.x * s, q.y * s, q.z * s); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return q * s; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) | ||||
| 	{ | ||||
| 		return tquat<T, P>( | ||||
| 			q.w / s, q.x / s, q.y / s, q.z / s); | ||||
| 	} | ||||
|  | ||||
| 	// -- Boolean operators -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) | ||||
| 	{ | ||||
| 		return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) | ||||
| 	{ | ||||
| 		return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); | ||||
| 	} | ||||
|  | ||||
| 	// -- Operations -- | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return glm::sqrt(dot(q, q)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		T len = length(q); | ||||
| 		if(len <= T(0)) // Problem | ||||
| 			return tquat<T, P>(1, 0, 0, 0); | ||||
| 		T oneOverLen = T(1) / len; | ||||
| 		return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) | ||||
| 	{ | ||||
| 		return tquat<T, P>( | ||||
| 			q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, | ||||
| 			q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, | ||||
| 			q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, | ||||
| 			q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); | ||||
| 	} | ||||
| /* | ||||
| 	// (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) | ||||
| 	{ | ||||
| 		if(a <= T(0)) return x; | ||||
| 		if(a >= T(1)) return y; | ||||
|  | ||||
| 		float fCos = dot(x, y); | ||||
| 		tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; | ||||
| 		if(fCos < T(0)) | ||||
| 		{ | ||||
| 			y2 = -y; | ||||
| 			fCos = -fCos; | ||||
| 		} | ||||
|  | ||||
| 		//if(fCos > 1.0f) // problem | ||||
| 		float k0, k1; | ||||
| 		if(fCos > T(0.9999)) | ||||
| 		{ | ||||
| 			k0 = T(1) - a; | ||||
| 			k1 = T(0) + a; //BUG!!! 1.0f + a; | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			T fSin = sqrt(T(1) - fCos * fCos); | ||||
| 			T fAngle = atan(fSin, fCos); | ||||
| 			T fOneOverSin = static_cast<T>(1) / fSin; | ||||
| 			k0 = sin((T(1) - a) * fAngle) * fOneOverSin; | ||||
| 			k1 = sin((T(0) + a) * fAngle) * fOneOverSin; | ||||
| 		} | ||||
|  | ||||
| 		return tquat<T, P>( | ||||
| 			k0 * x.w + k1 * y2.w, | ||||
| 			k0 * x.x + k1 * y2.x, | ||||
| 			k0 * x.y + k1 * y2.y, | ||||
| 			k0 * x.z + k1 * y2.z); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> mix2 | ||||
| 	( | ||||
| 		tquat<T, P> const & x,  | ||||
| 		tquat<T, P> const & y,  | ||||
| 		T const & a | ||||
| 	) | ||||
| 	{ | ||||
| 		bool flip = false; | ||||
| 		if(a <= static_cast<T>(0)) return x; | ||||
| 		if(a >= static_cast<T>(1)) return y; | ||||
|  | ||||
| 		T cos_t = dot(x, y); | ||||
| 		if(cos_t < T(0)) | ||||
| 		{ | ||||
| 			cos_t = -cos_t; | ||||
| 			flip = true; | ||||
| 		} | ||||
|  | ||||
| 		T alpha(0), beta(0); | ||||
|  | ||||
| 		if(T(1) - cos_t < 1e-7) | ||||
| 			beta = static_cast<T>(1) - alpha; | ||||
| 		else | ||||
| 		{ | ||||
| 			T theta = acos(cos_t); | ||||
| 			T sin_t = sin(theta); | ||||
| 			beta = sin(theta * (T(1) - alpha)) / sin_t; | ||||
| 			alpha = sin(alpha * theta) / sin_t; | ||||
| 		} | ||||
|  | ||||
| 		if(flip) | ||||
| 			alpha = -alpha; | ||||
| 		 | ||||
| 		return normalize(beta * x + alpha * y); | ||||
| 	} | ||||
| */ | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) | ||||
| 	{ | ||||
| 		T cosTheta = dot(x, y); | ||||
|  | ||||
| 		// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator | ||||
| 		if(cosTheta > T(1) - epsilon<T>()) | ||||
| 		{ | ||||
| 			// Linear interpolation | ||||
| 			return tquat<T, P>( | ||||
| 				mix(x.w, y.w, a), | ||||
| 				mix(x.x, y.x, a), | ||||
| 				mix(x.y, y.y, a), | ||||
| 				mix(x.z, y.z, a)); | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			// Essential Mathematics, page 467 | ||||
| 			T angle = acos(cosTheta); | ||||
| 			return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) | ||||
| 	{ | ||||
| 		// Lerp is only defined in [0, 1] | ||||
| 		assert(a >= static_cast<T>(0)); | ||||
| 		assert(a <= static_cast<T>(1)); | ||||
|  | ||||
| 		return x * (T(1) - a) + (y * a); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x,	tquat<T, P> const & y, T a) | ||||
| 	{ | ||||
| 		tquat<T, P> z = y; | ||||
|  | ||||
| 		T cosTheta = dot(x, y); | ||||
|  | ||||
| 		// If cosTheta < 0, the interpolation will take the long way around the sphere.  | ||||
| 		// To fix this, one quat must be negated. | ||||
| 		if (cosTheta < T(0)) | ||||
| 		{ | ||||
| 			z        = -y; | ||||
| 			cosTheta = -cosTheta; | ||||
| 		} | ||||
|  | ||||
| 		// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator | ||||
| 		if(cosTheta > T(1) - epsilon<T>()) | ||||
| 		{ | ||||
| 			// Linear interpolation | ||||
| 			return tquat<T, P>( | ||||
| 				mix(x.w, z.w, a), | ||||
| 				mix(x.x, z.x, a), | ||||
| 				mix(x.y, z.y, a), | ||||
| 				mix(x.z, z.z, a)); | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			// Essential Mathematics, page 467 | ||||
| 			T angle = acos(cosTheta); | ||||
| 			return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tvec3<T, P> Tmp = v; | ||||
|  | ||||
| 		// Axis of rotation must be normalised | ||||
| 		T len = glm::length(Tmp); | ||||
| 		if(abs(len - T(1)) > T(0.001)) | ||||
| 		{ | ||||
| 			T oneOverLen = static_cast<T>(1) / len; | ||||
| 			Tmp.x *= oneOverLen; | ||||
| 			Tmp.y *= oneOverLen; | ||||
| 			Tmp.z *= oneOverLen; | ||||
| 		} | ||||
|  | ||||
| 		T const AngleRad(angle); | ||||
| 		T const Sin = sin(AngleRad * T(0.5)); | ||||
|  | ||||
| 		return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); | ||||
| 		//return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) | ||||
| 	{ | ||||
| 		return tvec3<T, P>(pitch(x), yaw(x), roll(x)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		tmat3x3<T, P> Result(T(1)); | ||||
| 		T qxx(q.x * q.x); | ||||
| 		T qyy(q.y * q.y); | ||||
| 		T qzz(q.z * q.z); | ||||
| 		T qxz(q.x * q.z); | ||||
| 		T qxy(q.x * q.y); | ||||
| 		T qyz(q.y * q.z); | ||||
| 		T qwx(q.w * q.x); | ||||
| 		T qwy(q.w * q.y); | ||||
| 		T qwz(q.w * q.z); | ||||
|  | ||||
| 		Result[0][0] = T(1) - T(2) * (qyy +  qzz); | ||||
| 		Result[0][1] = T(2) * (qxy + qwz); | ||||
| 		Result[0][2] = T(2) * (qxz - qwy); | ||||
|  | ||||
| 		Result[1][0] = T(2) * (qxy - qwz); | ||||
| 		Result[1][1] = T(1) - T(2) * (qxx +  qzz); | ||||
| 		Result[1][2] = T(2) * (qyz + qwx); | ||||
|  | ||||
| 		Result[2][0] = T(2) * (qxz + qwy); | ||||
| 		Result[2][1] = T(2) * (qyz - qwx); | ||||
| 		Result[2][2] = T(1) - T(2) * (qxx +  qyy); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) | ||||
| 	{ | ||||
| 		return tmat4x4<T, P>(mat3_cast(q)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) | ||||
| 	{ | ||||
| 		T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; | ||||
| 		T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; | ||||
| 		T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; | ||||
| 		T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; | ||||
|  | ||||
| 		int biggestIndex = 0; | ||||
| 		T fourBiggestSquaredMinus1 = fourWSquaredMinus1; | ||||
| 		if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) | ||||
| 		{ | ||||
| 			fourBiggestSquaredMinus1 = fourXSquaredMinus1; | ||||
| 			biggestIndex = 1; | ||||
| 		} | ||||
| 		if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) | ||||
| 		{ | ||||
| 			fourBiggestSquaredMinus1 = fourYSquaredMinus1; | ||||
| 			biggestIndex = 2; | ||||
| 		} | ||||
| 		if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) | ||||
| 		{ | ||||
| 			fourBiggestSquaredMinus1 = fourZSquaredMinus1; | ||||
| 			biggestIndex = 3; | ||||
| 		} | ||||
|  | ||||
| 		T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); | ||||
| 		T mult = static_cast<T>(0.25) / biggestVal; | ||||
|  | ||||
| 		tquat<T, P> Result(uninitialize); | ||||
| 		switch(biggestIndex) | ||||
| 		{ | ||||
| 		case 0: | ||||
| 			Result.w = biggestVal; | ||||
| 			Result.x = (m[1][2] - m[2][1]) * mult; | ||||
| 			Result.y = (m[2][0] - m[0][2]) * mult; | ||||
| 			Result.z = (m[0][1] - m[1][0]) * mult; | ||||
| 			break; | ||||
| 		case 1: | ||||
| 			Result.w = (m[1][2] - m[2][1]) * mult; | ||||
| 			Result.x = biggestVal; | ||||
| 			Result.y = (m[0][1] + m[1][0]) * mult; | ||||
| 			Result.z = (m[2][0] + m[0][2]) * mult; | ||||
| 			break; | ||||
| 		case 2: | ||||
| 			Result.w = (m[2][0] - m[0][2]) * mult; | ||||
| 			Result.x = (m[0][1] + m[1][0]) * mult; | ||||
| 			Result.y = biggestVal; | ||||
| 			Result.z = (m[1][2] + m[2][1]) * mult; | ||||
| 			break; | ||||
| 		case 3: | ||||
| 			Result.w = (m[0][1] - m[1][0]) * mult; | ||||
| 			Result.x = (m[2][0] + m[0][2]) * mult; | ||||
| 			Result.y = (m[1][2] + m[2][1]) * mult; | ||||
| 			Result.z = biggestVal; | ||||
| 			break; | ||||
| 			 | ||||
| 		default:					// Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. | ||||
| 			assert(false); | ||||
| 			break; | ||||
| 		} | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) | ||||
| 	{ | ||||
| 		return quat_cast(tmat3x3<T, P>(m4)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) | ||||
| 	{ | ||||
| 		return acos(x.w) * T(2); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) | ||||
| 	{ | ||||
| 		T tmp1 = static_cast<T>(1) - x.w * x.w; | ||||
| 		if(tmp1 <= static_cast<T>(0)) | ||||
| 			return tvec3<T, P>(0, 0, 1); | ||||
| 		T tmp2 = static_cast<T>(1) / sqrt(tmp1); | ||||
| 		return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) | ||||
| 	{ | ||||
| 		tquat<T, P> Result(uninitialize); | ||||
|  | ||||
| 		T const a(angle); | ||||
| 		T const s = glm::sin(a * static_cast<T>(0.5)); | ||||
|  | ||||
| 		Result.w = glm::cos(a * static_cast<T>(0.5)); | ||||
| 		Result.x = v.x * s; | ||||
| 		Result.y = v.y * s; | ||||
| 		Result.z = v.z * s; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] < y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] <= y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] > y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] >= y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] == y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) | ||||
| 	{ | ||||
| 		tvec4<bool, P> Result(uninitialize); | ||||
| 		for(length_t i = 0; i < x.length(); ++i) | ||||
| 			Result[i] = x[i] != y[i]; | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); | ||||
|  | ||||
| 		return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); | ||||
|  | ||||
| 		return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); | ||||
| 	} | ||||
| }//namespace glm | ||||
|  | ||||
| #if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE | ||||
| #	include "quaternion_simd.inl" | ||||
| #endif | ||||
|  | ||||
							
								
								
									
										198
									
								
								lib/glm/gtc/quaternion_simd.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										198
									
								
								lib/glm/gtc/quaternion_simd.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,198 @@ | ||||
| /// @ref core | ||||
| /// @file glm/gtc/quaternion_simd.inl | ||||
|  | ||||
| #if GLM_ARCH & GLM_ARCH_SSE2_BIT | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| /* | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_mul<float, P, true> | ||||
| 	{ | ||||
| 		static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2) | ||||
| 		{ | ||||
| 			// SSE2 STATS: 11 shuffle, 8 mul, 8 add | ||||
| 			// SSE4 STATS: 3 shuffle, 4 mul, 4 dpps | ||||
|  | ||||
| 			__m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3))); | ||||
| 			__m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2))); | ||||
| 			__m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1))); | ||||
| 			__m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data); | ||||
|  | ||||
| #			if GLM_ARCH & GLM_ARCH_SSE41_BIT | ||||
| 				__m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f,  1.0f,  1.0f), 0xff); | ||||
| 				__m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f,  1.0f,  1.0f, -1.0f), 0xff); | ||||
| 				__m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f,  1.0f, -1.0f,  1.0f), 0xff); | ||||
| 				__m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff); | ||||
| #			else | ||||
| 				__m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f,  1.0f,  1.0f)); | ||||
| 				__m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4)); | ||||
| 				__m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1)); | ||||
|  | ||||
| 				__m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f,  1.0f,  1.0f, -1.0f)); | ||||
| 				__m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5)); | ||||
| 				__m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1)); | ||||
|  | ||||
| 				__m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f,  1.0f, -1.0f,  1.0f)); | ||||
| 				__m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6)); | ||||
| 				__m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1)); | ||||
|  | ||||
| 				__m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)); | ||||
| 				__m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7)); | ||||
| 				__m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1)); | ||||
| 		#endif | ||||
|  | ||||
| 			// This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than | ||||
| 			// the final code below. I'll keep this here for reference - maybe somebody else can do something better... | ||||
| 			// | ||||
| 			//__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0)); | ||||
| 			//__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0)); | ||||
| 			// | ||||
| 			//return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); | ||||
|  | ||||
| 			tquat<float, P> Result(uninitialize); | ||||
| 			_mm_store_ss(&Result.x, add4); | ||||
| 			_mm_store_ss(&Result.y, add5); | ||||
| 			_mm_store_ss(&Result.z, add6); | ||||
| 			_mm_store_ss(&Result.w, add7); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| */ | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_dot<tquat, float, P, true> | ||||
| 	{ | ||||
| 		static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y) | ||||
| 		{ | ||||
| 			return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_add<float, P, true> | ||||
| 	{ | ||||
| 		static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) | ||||
| 		{ | ||||
| 			tquat<float, P> Result(uninitialize); | ||||
| 			Result.data = _mm_add_ps(q.data, p.data); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| #	if GLM_ARCH & GLM_ARCH_AVX_BIT | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_add<double, P, true> | ||||
| 	{ | ||||
| 		static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) | ||||
| 		{ | ||||
| 			tquat<double, P> Result(uninitialize); | ||||
| 			Result.data = _mm256_add_pd(a.data, b.data); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| #	endif | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_sub<float, P, true> | ||||
| 	{ | ||||
| 		static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) | ||||
| 		{ | ||||
| 			tvec4<float, P> Result(uninitialize); | ||||
| 			Result.data = _mm_sub_ps(q.data, p.data); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| #	if GLM_ARCH & GLM_ARCH_AVX_BIT | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_sub<double, P, true> | ||||
| 	{ | ||||
| 		static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) | ||||
| 		{ | ||||
| 			tquat<double, P> Result(uninitialize); | ||||
| 			Result.data = _mm256_sub_pd(a.data, b.data); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| #	endif | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_mul_scalar<float, P, true> | ||||
| 	{ | ||||
| 		static tquat<float, P> call(tquat<float, P> const& q, float s) | ||||
| 		{ | ||||
| 			tvec4<float, P> Result(uninitialize); | ||||
| 			Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| #	if GLM_ARCH & GLM_ARCH_AVX_BIT | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_mul_scalar<double, P, true> | ||||
| 	{ | ||||
| 		static tquat<double, P> call(tquat<double, P> const& q, double s) | ||||
| 		{ | ||||
| 			tquat<double, P> Result(uninitialize); | ||||
| 			Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| #	endif | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_div_scalar<float, P, true> | ||||
| 	{ | ||||
| 		static tquat<float, P> call(tquat<float, P> const& q, float s) | ||||
| 		{ | ||||
| 			tvec4<float, P> Result(uninitialize); | ||||
| 			Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| #	if GLM_ARCH & GLM_ARCH_AVX_BIT | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_div_scalar<double, P, true> | ||||
| 	{ | ||||
| 		static tquat<double, P> call(tquat<double, P> const& q, double s) | ||||
| 		{ | ||||
| 			tquat<double, P> Result(uninitialize); | ||||
| 			Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| #	endif | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_quat_mul_vec4<float, P, true> | ||||
| 	{ | ||||
| 		static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v) | ||||
| 		{ | ||||
| 			__m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); | ||||
| 			__m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); | ||||
| 			__m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); | ||||
| 			__m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); | ||||
| 			__m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); | ||||
| 	 | ||||
| 			__m128 uv      = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); | ||||
| 			__m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); | ||||
| 			__m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); | ||||
| 			__m128 uuv     = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); | ||||
|  | ||||
| 			__m128 const two = _mm_set1_ps(2.0f); | ||||
| 			uv  = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); | ||||
| 			uuv = _mm_mul_ps(uuv, two); | ||||
|  | ||||
| 			tvec4<float, P> Result(uninitialize); | ||||
| 			Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); | ||||
| 			return Result; | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
| }//namespace glm | ||||
|  | ||||
| #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | ||||
|  | ||||
							
								
								
									
										98
									
								
								lib/glm/gtc/random.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										98
									
								
								lib/glm/gtc/random.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,98 @@ | ||||
| /// @ref gtc_random | ||||
| /// @file glm/gtc/random.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtx_random (extended) | ||||
| /// | ||||
| /// @defgroup gtc_random GLM_GTC_random | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Generate random number from various distribution methods. | ||||
| /// | ||||
| /// <glm/gtc/random.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_random extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_random | ||||
| 	/// @{ | ||||
| 	 | ||||
| 	/// Generate random numbers in the interval [Min, Max], according a linear distribution  | ||||
| 	///  | ||||
| 	/// @param Min  | ||||
| 	/// @param Max  | ||||
| 	/// @tparam genType Value type. Currently supported: float or double scalars. | ||||
| 	/// @see gtc_random | ||||
| 	template <typename genTYpe> | ||||
| 	GLM_FUNC_DECL genTYpe linearRand( | ||||
| 		genTYpe Min, | ||||
| 		genTYpe Max); | ||||
|  | ||||
| 	/// Generate random numbers in the interval [Min, Max], according a linear distribution  | ||||
| 	///  | ||||
| 	/// @param Min  | ||||
| 	/// @param Max  | ||||
| 	/// @tparam T Value type. Currently supported: float or double. | ||||
| 	/// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible | ||||
| 	/// @see gtc_random | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> linearRand( | ||||
| 		vecType<T, P> const & Min, | ||||
| 		vecType<T, P> const & Max); | ||||
|  | ||||
| 	/// Generate random numbers in the interval [Min, Max], according a gaussian distribution  | ||||
| 	///  | ||||
| 	/// @param Mean | ||||
| 	/// @param Deviation | ||||
| 	/// @see gtc_random | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType gaussRand( | ||||
| 		genType Mean, | ||||
| 		genType Deviation); | ||||
| 	 | ||||
| 	/// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius | ||||
| 	///  | ||||
| 	/// @param Radius  | ||||
| 	/// @see gtc_random | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tvec2<T, defaultp> circularRand( | ||||
| 		T Radius); | ||||
| 	 | ||||
| 	/// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius | ||||
| 	///  | ||||
| 	/// @param Radius | ||||
| 	/// @see gtc_random | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand( | ||||
| 		T Radius); | ||||
| 	 | ||||
| 	/// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius | ||||
| 	///  | ||||
| 	/// @param Radius | ||||
| 	/// @see gtc_random | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tvec2<T, defaultp> diskRand( | ||||
| 		T Radius); | ||||
| 	 | ||||
| 	/// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius | ||||
| 	///  | ||||
| 	/// @param Radius | ||||
| 	/// @see gtc_random | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL tvec3<T, defaultp> ballRand( | ||||
| 		T Radius); | ||||
| 	 | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "random.inl" | ||||
							
								
								
									
										350
									
								
								lib/glm/gtc/random.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										350
									
								
								lib/glm/gtc/random.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,350 @@ | ||||
| /// @ref gtc_random | ||||
| /// @file glm/gtc/random.inl | ||||
|  | ||||
| #include "../geometric.hpp" | ||||
| #include "../exponential.hpp" | ||||
| #include <cstdlib> | ||||
| #include <ctime> | ||||
| #include <cassert> | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename T, precision P, template <class, precision> class vecType> | ||||
| 	struct compute_rand | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(); | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_rand<uint8, P, tvec1> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec1<uint8, P> call() | ||||
| 		{ | ||||
| 			return tvec1<uint8, P>( | ||||
| 				std::rand() % std::numeric_limits<uint8>::max()); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_rand<uint8, P, tvec2> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec2<uint8, P> call() | ||||
| 		{ | ||||
| 			return tvec2<uint8, P>( | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max()); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_rand<uint8, P, tvec3> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec3<uint8, P> call() | ||||
| 		{ | ||||
| 			return tvec3<uint8, P>( | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max()); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P> | ||||
| 	struct compute_rand<uint8, P, tvec4> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static tvec4<uint8, P> call() | ||||
| 		{ | ||||
| 			return tvec4<uint8, P>( | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max(), | ||||
| 				std::rand() % std::numeric_limits<uint8>::max()); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_rand<uint16, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint16, P> call() | ||||
| 		{ | ||||
| 			return | ||||
| 				(vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) | | ||||
| 				(vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_rand<uint32, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint32, P> call() | ||||
| 		{ | ||||
| 			return | ||||
| 				(vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) | | ||||
| 				(vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_rand<uint64, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint64, P> call() | ||||
| 		{ | ||||
| 			return | ||||
| 				(vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) | | ||||
| 				(vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max); | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<int8, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max) | ||||
| 		{ | ||||
| 			return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<uint8, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max) | ||||
| 		{ | ||||
| 			return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<int16, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max) | ||||
| 		{ | ||||
| 			return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<uint16, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max) | ||||
| 		{ | ||||
| 			return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<int32, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max) | ||||
| 		{ | ||||
| 			return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<uint32, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max) | ||||
| 		{ | ||||
| 			return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|   | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<int64, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max) | ||||
| 		{ | ||||
| 			return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <precision P, template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<uint64, P, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max) | ||||
| 		{ | ||||
| 			return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<float, lowp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<float, mediump, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max) | ||||
| 		{ | ||||
| 			return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<float, highp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<double, lowp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<double, mediump, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max) | ||||
| 		{ | ||||
| 			return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<double, highp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<long double, lowp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<long double, mediump, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max) | ||||
| 		{ | ||||
| 			return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <template <class, precision> class vecType> | ||||
| 	struct compute_linearRand<long double, highp, vecType> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max) | ||||
| 		{ | ||||
| 			return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max) | ||||
| 	{ | ||||
| 		return detail::compute_linearRand<genType, highp, tvec1>::call( | ||||
| 			tvec1<genType, highp>(Min), | ||||
| 			tvec1<genType, highp>(Max)).x; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max) | ||||
| 	{ | ||||
| 		return detail::compute_linearRand<T, P, vecType>::call(Min, Max); | ||||
| 	} | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation) | ||||
| 	{ | ||||
| 		genType w, x1, x2; | ||||
| 	 | ||||
| 		do | ||||
| 		{ | ||||
| 			x1 = linearRand(genType(-1), genType(1)); | ||||
| 			x2 = linearRand(genType(-1), genType(1)); | ||||
| 		 | ||||
| 			w = x1 * x1 + x2 * x2; | ||||
| 		} while(w > genType(1)); | ||||
| 	 | ||||
| 		return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation) | ||||
| 	{ | ||||
| 		return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius) | ||||
| 	{		 | ||||
| 		tvec2<T, defaultp> Result(T(0)); | ||||
| 		T LenRadius(T(0)); | ||||
| 		 | ||||
| 		do | ||||
| 		{ | ||||
| 			Result = linearRand( | ||||
| 				tvec2<T, defaultp>(-Radius), | ||||
| 				tvec2<T, defaultp>(Radius)); | ||||
| 			LenRadius = length(Result); | ||||
| 		} | ||||
| 		while(LenRadius > Radius); | ||||
| 		 | ||||
| 		return Result; | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius) | ||||
| 	{		 | ||||
| 		tvec3<T, defaultp> Result(T(0)); | ||||
| 		T LenRadius(T(0)); | ||||
| 		 | ||||
| 		do | ||||
| 		{ | ||||
| 			Result = linearRand( | ||||
| 				tvec3<T, defaultp>(-Radius), | ||||
| 				tvec3<T, defaultp>(Radius)); | ||||
| 			LenRadius = length(Result); | ||||
| 		} | ||||
| 		while(LenRadius > Radius); | ||||
| 		 | ||||
| 		return Result; | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius) | ||||
| 	{ | ||||
| 		T a = linearRand(T(0), T(6.283185307179586476925286766559f)); | ||||
| 		return tvec2<T, defaultp>(cos(a), sin(a)) * Radius;		 | ||||
| 	} | ||||
| 	 | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius) | ||||
| 	{ | ||||
| 		T z = linearRand(T(-1), T(1)); | ||||
| 		T a = linearRand(T(0), T(6.283185307179586476925286766559f)); | ||||
| 	 | ||||
| 		T r = sqrt(T(1) - z * z); | ||||
| 	 | ||||
| 		T x = r * cos(a); | ||||
| 		T y = r * sin(a); | ||||
| 	 | ||||
| 		return tvec3<T, defaultp>(x, y, z) * Radius;	 | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										135
									
								
								lib/glm/gtc/reciprocal.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								lib/glm/gtc/reciprocal.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,135 @@ | ||||
| /// @ref gtc_reciprocal | ||||
| /// @file glm/gtc/reciprocal.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_reciprocal GLM_GTC_reciprocal | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Define secant, cosecant and cotangent functions. | ||||
| /// | ||||
| /// <glm/gtc/reciprocal.hpp> need to be included to use these features. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_reciprocal extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_reciprocal | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Secant function. | ||||
| 	/// hypotenuse / adjacent or 1 / cos(x) | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType sec(genType angle); | ||||
|  | ||||
| 	/// Cosecant function. | ||||
| 	/// hypotenuse / opposite or 1 / sin(x) | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType>  | ||||
| 	GLM_FUNC_DECL genType csc(genType angle); | ||||
| 		 | ||||
| 	/// Cotangent function. | ||||
| 	/// adjacent / opposite or 1 / tan(x) | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType cot(genType angle); | ||||
|  | ||||
| 	/// Inverse secant function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType asec(genType x); | ||||
|  | ||||
| 	/// Inverse cosecant function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType acsc(genType x); | ||||
| 		 | ||||
| 	/// Inverse cotangent function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType acot(genType x); | ||||
|  | ||||
| 	/// Secant hyperbolic function. | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType sech(genType angle); | ||||
|  | ||||
| 	/// Cosecant hyperbolic function. | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType csch(genType angle); | ||||
| 		 | ||||
| 	/// Cotangent hyperbolic function. | ||||
| 	///  | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType coth(genType angle); | ||||
|  | ||||
| 	/// Inverse secant hyperbolic function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType asech(genType x); | ||||
|  | ||||
| 	/// Inverse cosecant hyperbolic function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType acsch(genType x); | ||||
| 		 | ||||
| 	/// Inverse cotangent hyperbolic function. | ||||
| 	///  | ||||
| 	/// @return Return an angle expressed in radians. | ||||
| 	/// @tparam genType Floating-point scalar or vector types. | ||||
| 	///  | ||||
| 	/// @see gtc_reciprocal | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType acoth(genType x); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "reciprocal.inl" | ||||
							
								
								
									
										192
									
								
								lib/glm/gtc/reciprocal.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								lib/glm/gtc/reciprocal.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,192 @@ | ||||
| /// @ref gtc_reciprocal | ||||
| /// @file glm/gtc/reciprocal.inl | ||||
|  | ||||
| #include "../trigonometric.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	// sec | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType sec(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values"); | ||||
| 		return genType(1) / glm::cos(angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(sec, x); | ||||
| 	} | ||||
|  | ||||
| 	// csc | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType csc(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values"); | ||||
| 		return genType(1) / glm::sin(angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(csc, x); | ||||
| 	} | ||||
|  | ||||
| 	// cot | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType cot(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values"); | ||||
| 	 | ||||
| 		genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); | ||||
| 		return glm::tan(pi_over_2 - angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(cot, x); | ||||
| 	} | ||||
|  | ||||
| 	// asec | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType asec(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values"); | ||||
| 		return acos(genType(1) / x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(asec, x); | ||||
| 	} | ||||
|  | ||||
| 	// acsc | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType acsc(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values"); | ||||
| 		return asin(genType(1) / x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(acsc, x); | ||||
| 	} | ||||
|  | ||||
| 	// acot | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType acot(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values"); | ||||
|  | ||||
| 		genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); | ||||
| 		return pi_over_2 - atan(x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(acot, x); | ||||
| 	} | ||||
|  | ||||
| 	// sech | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType sech(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values"); | ||||
| 		return genType(1) / glm::cosh(angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(sech, x); | ||||
| 	} | ||||
|  | ||||
| 	// csch | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType csch(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values"); | ||||
| 		return genType(1) / glm::sinh(angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(csch, x); | ||||
| 	} | ||||
|  | ||||
| 	// coth | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType coth(genType angle) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values"); | ||||
| 		return glm::cosh(angle) / glm::sinh(angle); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(coth, x); | ||||
| 	} | ||||
|  | ||||
| 	// asech | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType asech(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values"); | ||||
| 		return acosh(genType(1) / x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(asech, x); | ||||
| 	} | ||||
|  | ||||
| 	// acsch | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType acsch(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values"); | ||||
| 		return acsch(genType(1) / x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(acsch, x); | ||||
| 	} | ||||
|  | ||||
| 	// acoth | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType acoth(genType x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values"); | ||||
| 		return atanh(genType(1) / x); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs"); | ||||
| 		return detail::functor1<T, T, P, vecType>::call(acoth, x); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										174
									
								
								lib/glm/gtc/round.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										174
									
								
								lib/glm/gtc/round.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,174 @@ | ||||
| /// @ref gtc_round | ||||
| /// @file glm/gtc/round.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_round (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_round GLM_GTC_round | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief rounding value to specific boundings | ||||
| /// | ||||
| /// <glm/gtc/round.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/_vectorize.hpp" | ||||
| #include "../vector_relational.hpp" | ||||
| #include "../common.hpp" | ||||
| #include <limits> | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_integer extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_round | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Return true if the value is a power of two number. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value); | ||||
|  | ||||
| 	/// Return true if the value is a power of two number. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value); | ||||
|  | ||||
| 	/// Return the power of two number which value is just higher the input value, | ||||
| 	/// round up to a power of two. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value); | ||||
|  | ||||
| 	/// Return the power of two number which value is just higher the input value, | ||||
| 	/// round up to a power of two. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value); | ||||
|  | ||||
| 	/// Return the power of two number which value is just lower the input value, | ||||
| 	/// round down to a power of two. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value); | ||||
|  | ||||
| 	/// Return the power of two number which value is just lower the input value, | ||||
| 	/// round down to a power of two. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value); | ||||
|  | ||||
| 	/// Return the power of two number which value is the closet to the input value. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value); | ||||
|  | ||||
| 	/// Return the power of two number which value is the closet to the input value. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value); | ||||
|  | ||||
| 	/// Return true if the 'Value' is a multiple of 'Multiple'. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple); | ||||
|  | ||||
| 	/// Return true if the 'Value' is a multiple of 'Multiple'. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple); | ||||
|  | ||||
| 	/// Return true if the 'Value' is a multiple of 'Multiple'. | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple); | ||||
|  | ||||
| 	/// Higher multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple); | ||||
|  | ||||
| 	/// Higher multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple); | ||||
|  | ||||
| 	/// Lower multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType floorMultiple( | ||||
| 		genType Source, | ||||
| 		genType Multiple); | ||||
|  | ||||
| 	/// Lower multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> floorMultiple( | ||||
| 		vecType<T, P> const & Source, | ||||
| 		vecType<T, P> const & Multiple); | ||||
|  | ||||
| 	/// Lower multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType roundMultiple( | ||||
| 		genType Source, | ||||
| 		genType Multiple); | ||||
|  | ||||
| 	/// Lower multiple number of Source. | ||||
| 	/// | ||||
| 	/// @tparam genType Floating-point or integer scalar or vector types. | ||||
| 	/// @param Source  | ||||
| 	/// @param Multiple Must be a null or positive value | ||||
| 	/// | ||||
| 	/// @see gtc_round | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<T, P> roundMultiple( | ||||
| 		vecType<T, P> const & Source, | ||||
| 		vecType<T, P> const & Multiple); | ||||
|  | ||||
| 	/// @} | ||||
| } //namespace glm | ||||
|  | ||||
| #include "round.inl" | ||||
							
								
								
									
										344
									
								
								lib/glm/gtc/round.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										344
									
								
								lib/glm/gtc/round.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,344 @@ | ||||
| /// @ref gtc_round | ||||
| /// @file glm/gtc/round.inl | ||||
|  | ||||
| #include "../detail/func_integer.hpp" | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType, bool compute = false> | ||||
| 	struct compute_ceilShift | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T) | ||||
| 		{ | ||||
| 			return v; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	struct compute_ceilShift<T, P, vecType, true> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift) | ||||
| 		{ | ||||
| 			return v | (v >> Shift); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true> | ||||
| 	struct compute_ceilPowerOfTwo | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) | ||||
| 		{ | ||||
| 			GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); | ||||
|  | ||||
| 			vecType<T, P> const Sign(sign(x)); | ||||
|  | ||||
| 			vecType<T, P> v(abs(x)); | ||||
|  | ||||
| 			v = v - static_cast<T>(1); | ||||
| 			v = v | (v >> static_cast<T>(1)); | ||||
| 			v = v | (v >> static_cast<T>(2)); | ||||
| 			v = v | (v >> static_cast<T>(4)); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); | ||||
| 			return (v + static_cast<T>(1)) * Sign; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	struct compute_ceilPowerOfTwo<T, P, vecType, false> | ||||
| 	{ | ||||
| 		GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) | ||||
| 		{ | ||||
| 			GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); | ||||
|  | ||||
| 			vecType<T, P> v(x); | ||||
|  | ||||
| 			v = v - static_cast<T>(1); | ||||
| 			v = v | (v >> static_cast<T>(1)); | ||||
| 			v = v | (v >> static_cast<T>(2)); | ||||
| 			v = v | (v >> static_cast<T>(4)); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); | ||||
| 			v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); | ||||
| 			return v + static_cast<T>(1); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <bool is_float, bool is_signed> | ||||
| 	struct compute_ceilMultiple{}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_ceilMultiple<true, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source > genType(0)) | ||||
| 				return Source + (Multiple - std::fmod(Source, Multiple)); | ||||
| 			else | ||||
| 				return Source + std::fmod(-Source, Multiple); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_ceilMultiple<false, false> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			genType Tmp = Source - genType(1); | ||||
| 			return Tmp + (Multiple - (Tmp % Multiple)); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_ceilMultiple<false, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source > genType(0)) | ||||
| 			{ | ||||
| 				genType Tmp = Source - genType(1); | ||||
| 				return Tmp + (Multiple - (Tmp % Multiple)); | ||||
| 			} | ||||
| 			else | ||||
| 				return Source + (-Source % Multiple); | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <bool is_float, bool is_signed> | ||||
| 	struct compute_floorMultiple{}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_floorMultiple<true, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - std::fmod(Source, Multiple); | ||||
| 			else | ||||
| 				return Source - std::fmod(Source, Multiple) - Multiple; | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_floorMultiple<false, false> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - Source % Multiple; | ||||
| 			else | ||||
| 			{ | ||||
| 				genType Tmp = Source + genType(1); | ||||
| 				return Tmp - Tmp % Multiple - Multiple; | ||||
| 			} | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_floorMultiple<false, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - Source % Multiple; | ||||
| 			else | ||||
| 			{ | ||||
| 				genType Tmp = Source + genType(1); | ||||
| 				return Tmp - Tmp % Multiple - Multiple; | ||||
| 			} | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <bool is_float, bool is_signed> | ||||
| 	struct compute_roundMultiple{}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_roundMultiple<true, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - std::fmod(Source, Multiple); | ||||
| 			else | ||||
| 			{ | ||||
| 				genType Tmp = Source + genType(1); | ||||
| 				return Tmp - std::fmod(Tmp, Multiple) - Multiple; | ||||
| 			} | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_roundMultiple<false, false> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - Source % Multiple; | ||||
| 			else | ||||
| 			{ | ||||
| 				genType Tmp = Source + genType(1); | ||||
| 				return Tmp - Tmp % Multiple - Multiple; | ||||
| 			} | ||||
| 		} | ||||
| 	}; | ||||
|  | ||||
| 	template <> | ||||
| 	struct compute_roundMultiple<false, true> | ||||
| 	{ | ||||
| 		template <typename genType> | ||||
| 		GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) | ||||
| 		{ | ||||
| 			if(Source >= genType(0)) | ||||
| 				return Source - Source % Multiple; | ||||
| 			else | ||||
| 			{ | ||||
| 				genType Tmp = Source + genType(1); | ||||
| 				return Tmp - Tmp % Multiple - Multiple; | ||||
| 			} | ||||
| 		} | ||||
| 	}; | ||||
| }//namespace detail | ||||
|  | ||||
| 	//////////////// | ||||
| 	// isPowerOfTwo | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value) | ||||
| 	{ | ||||
| 		genType const Result = glm::abs(Value); | ||||
| 		return !(Result & (Result - 1)); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value) | ||||
| 	{ | ||||
| 		vecType<T, P> const Result(abs(Value)); | ||||
| 		return equal(Result & (Result - 1), vecType<T, P>(0)); | ||||
| 	} | ||||
|  | ||||
| 	////////////////// | ||||
| 	// ceilPowerOfTwo | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value) | ||||
| 	{ | ||||
| 		return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v) | ||||
| 	{ | ||||
| 		return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v); | ||||
| 	} | ||||
|  | ||||
| 	/////////////////// | ||||
| 	// floorPowerOfTwo | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value) | ||||
| 	{ | ||||
| 		return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v) | ||||
| 	{ | ||||
| 		return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v); | ||||
| 	} | ||||
|  | ||||
| 	/////////////////// | ||||
| 	// roundPowerOfTwo | ||||
|  | ||||
| 	template <typename genIUType> | ||||
| 	GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value) | ||||
| 	{ | ||||
| 		if(isPowerOfTwo(value)) | ||||
| 			return value; | ||||
|  | ||||
| 		genIUType const prev = static_cast<genIUType>(1) << findMSB(value); | ||||
| 		genIUType const next = prev << static_cast<genIUType>(1); | ||||
| 		return (next - value) < (value - prev) ? next : prev; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v) | ||||
| 	{ | ||||
| 		return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v); | ||||
| 	} | ||||
|  | ||||
| 	//////////////// | ||||
| 	// isMultiple | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple) | ||||
| 	{ | ||||
| 		return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple) | ||||
| 	{ | ||||
| 		return (Value % Multiple) == vecType<T, P>(0); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple) | ||||
| 	{ | ||||
| 		return (Value % Multiple) == vecType<T, P>(0); | ||||
| 	} | ||||
|  | ||||
| 	////////////////////// | ||||
| 	// ceilMultiple | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple) | ||||
| 	{ | ||||
| 		return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) | ||||
| 	{ | ||||
| 		return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple); | ||||
| 	} | ||||
|  | ||||
| 	////////////////////// | ||||
| 	// floorMultiple | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple) | ||||
| 	{ | ||||
| 		return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) | ||||
| 	{ | ||||
| 		return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple); | ||||
| 	} | ||||
|  | ||||
| 	////////////////////// | ||||
| 	// roundMultiple | ||||
|  | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple) | ||||
| 	{ | ||||
| 		return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P, template <typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) | ||||
| 	{ | ||||
| 		return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple); | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										362
									
								
								lib/glm/gtc/type_aligned.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										362
									
								
								lib/glm/gtc/type_aligned.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,362 @@ | ||||
| /// @ref gtc_type_aligned | ||||
| /// @file glm/gtc/type_aligned.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_type_aligned GLM_GTC_type_aligned | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Aligned types. | ||||
| /// <glm/gtc/type_aligned.hpp> need to be included to use these features. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #if !GLM_HAS_ALIGNED_TYPE | ||||
| #	error "GLM: Aligned types are not supported on this platform" | ||||
| #endif | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| # pragma message("GLM: GLM_GTC_type_aligned extension included") | ||||
| #endif | ||||
|  | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../gtc/vec1.hpp" | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <typename T, precision P> struct tvec1; | ||||
| 	template <typename T, precision P> struct tvec2; | ||||
| 	template <typename T, precision P> struct tvec3; | ||||
| 	template <typename T, precision P> struct tvec4; | ||||
| 	/// @addtogroup gtc_type_aligned | ||||
| 	/// @{ | ||||
|  | ||||
| 	// -- *vec1 -- | ||||
|  | ||||
| 	typedef tvec1<float, aligned_highp>		aligned_highp_vec1; | ||||
| 	typedef tvec1<float, aligned_mediump>	aligned_mediump_vec1; | ||||
| 	typedef tvec1<float, aligned_lowp>		aligned_lowp_vec1; | ||||
| 	typedef tvec1<double, aligned_highp>	aligned_highp_dvec1; | ||||
| 	typedef tvec1<double, aligned_mediump>	aligned_mediump_dvec1; | ||||
| 	typedef tvec1<double, aligned_lowp>		aligned_lowp_dvec1; | ||||
| 	typedef tvec1<int, aligned_highp>		aligned_highp_ivec1; | ||||
| 	typedef tvec1<int, aligned_mediump>		aligned_mediump_ivec1; | ||||
| 	typedef tvec1<int, aligned_lowp>		aligned_lowp_ivec1; | ||||
| 	typedef tvec1<uint, aligned_highp>		aligned_highp_uvec1; | ||||
| 	typedef tvec1<uint, aligned_mediump>	aligned_mediump_uvec1; | ||||
| 	typedef tvec1<uint, aligned_lowp>		aligned_lowp_uvec1; | ||||
| 	typedef tvec1<bool, aligned_highp>		aligned_highp_bvec1; | ||||
| 	typedef tvec1<bool, aligned_mediump>	aligned_mediump_bvec1; | ||||
| 	typedef tvec1<bool, aligned_lowp>		aligned_lowp_bvec1; | ||||
|  | ||||
| 	typedef tvec1<float, packed_highp>		packed_highp_vec1; | ||||
| 	typedef tvec1<float, packed_mediump>	packed_mediump_vec1; | ||||
| 	typedef tvec1<float, packed_lowp>		packed_lowp_vec1; | ||||
| 	typedef tvec1<double, packed_highp>		packed_highp_dvec1; | ||||
| 	typedef tvec1<double, packed_mediump>	packed_mediump_dvec1; | ||||
| 	typedef tvec1<double, packed_lowp>		packed_lowp_dvec1; | ||||
| 	typedef tvec1<int, packed_highp>		packed_highp_ivec1; | ||||
| 	typedef tvec1<int, packed_mediump>		packed_mediump_ivec1; | ||||
| 	typedef tvec1<int, packed_lowp>			packed_lowp_ivec1; | ||||
| 	typedef tvec1<uint, packed_highp>		packed_highp_uvec1; | ||||
| 	typedef tvec1<uint, packed_mediump>		packed_mediump_uvec1; | ||||
| 	typedef tvec1<uint, packed_lowp>		packed_lowp_uvec1; | ||||
| 	typedef tvec1<bool, packed_highp>		packed_highp_bvec1; | ||||
| 	typedef tvec1<bool, packed_mediump>		packed_mediump_bvec1; | ||||
| 	typedef tvec1<bool, packed_lowp>		packed_lowp_bvec1; | ||||
|  | ||||
| 	// -- *vec2 -- | ||||
|  | ||||
| 	/// 2 components vector of high single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<float, aligned_highp>		aligned_highp_vec2; | ||||
|  | ||||
| 	/// 2 components vector of medium single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<float, aligned_mediump>	aligned_mediump_vec2; | ||||
|  | ||||
| 	/// 2 components vector of low single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<float, aligned_lowp>		aligned_lowp_vec2; | ||||
|  | ||||
| 	/// 2 components vector of high double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<double, aligned_highp>	aligned_highp_dvec2; | ||||
|  | ||||
| 	/// 2 components vector of medium double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<double, aligned_mediump>	aligned_mediump_dvec2; | ||||
|  | ||||
| 	/// 2 components vector of low double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<double, aligned_lowp>		aligned_lowp_dvec2; | ||||
|  | ||||
| 	/// 2 components vector of high precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<int, aligned_highp>		aligned_highp_ivec2; | ||||
|  | ||||
| 	/// 2 components vector of medium precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<int, aligned_mediump>		aligned_mediump_ivec2; | ||||
|  | ||||
| 	/// 2 components vector of low precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<int, aligned_lowp>		aligned_lowp_ivec2; | ||||
|  | ||||
| 	/// 2 components vector of high precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<uint, aligned_highp>		aligned_highp_uvec2; | ||||
|  | ||||
| 	/// 2 components vector of medium precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<uint, aligned_mediump>	aligned_mediump_uvec2; | ||||
|  | ||||
| 	/// 2 components vector of low precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<uint, aligned_lowp>		aligned_lowp_uvec2; | ||||
|  | ||||
| 	/// 2 components vector of high precision bool numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<bool, aligned_highp>		aligned_highp_bvec2; | ||||
|  | ||||
| 	/// 2 components vector of medium precision bool numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<bool, aligned_mediump>	aligned_mediump_bvec2; | ||||
|  | ||||
| 	/// 2 components vector of low precision bool numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec2<bool, aligned_lowp>		aligned_lowp_bvec2; | ||||
|  | ||||
| 	// -- *vec3 -- | ||||
|  | ||||
| 	/// 3 components vector of high single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<float, aligned_highp>		aligned_highp_vec3; | ||||
|  | ||||
| 	/// 3 components vector of medium single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<float, aligned_mediump>	aligned_mediump_vec3; | ||||
|  | ||||
| 	/// 3 components vector of low single-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<float, aligned_lowp>		aligned_lowp_vec3; | ||||
|  | ||||
| 	/// 3 components vector of high double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<double, aligned_highp>	aligned_highp_dvec3; | ||||
|  | ||||
| 	/// 3 components vector of medium double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<double, aligned_mediump>	aligned_mediump_dvec3; | ||||
|  | ||||
| 	/// 3 components vector of low double-precision floating-point numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<double, aligned_lowp>		aligned_lowp_dvec3; | ||||
|  | ||||
| 	/// 3 components vector of high precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<int, aligned_highp>		aligned_highp_ivec3; | ||||
|  | ||||
| 	/// 3 components vector of medium precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<int, aligned_mediump>		aligned_mediump_ivec3; | ||||
|  | ||||
| 	/// 3 components vector of low precision signed integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<int, aligned_lowp>		aligned_lowp_ivec3; | ||||
|  | ||||
| 	/// 3 components vector of high precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<uint, aligned_highp>		aligned_highp_uvec3; | ||||
|  | ||||
| 	/// 3 components vector of medium precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<uint, aligned_mediump>	aligned_mediump_uvec3; | ||||
|  | ||||
| 	/// 3 components vector of low precision unsigned integer numbers. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	typedef tvec3<uint, aligned_lowp>		aligned_lowp_uvec3; | ||||
|  | ||||
| 	/// 3 components vector of high precision bool numbers. | ||||
| 	typedef tvec3<bool, aligned_highp>		aligned_highp_bvec3; | ||||
|  | ||||
| 	/// 3 components vector of medium precision bool numbers. | ||||
| 	typedef tvec3<bool, aligned_mediump>	aligned_mediump_bvec3; | ||||
|  | ||||
| 	/// 3 components vector of low precision bool numbers. | ||||
| 	typedef tvec3<bool, aligned_lowp>		aligned_lowp_bvec3; | ||||
|  | ||||
| 	// -- *vec4 -- | ||||
|  | ||||
| 	/// 4 components vector of high single-precision floating-point numbers. | ||||
| 	typedef tvec4<float, aligned_highp>		aligned_highp_vec4; | ||||
|  | ||||
| 	/// 4 components vector of medium single-precision floating-point numbers. | ||||
| 	typedef tvec4<float, aligned_mediump>	aligned_mediump_vec4; | ||||
|  | ||||
| 	/// 4 components vector of low single-precision floating-point numbers. | ||||
| 	typedef tvec4<float, aligned_lowp>		aligned_lowp_vec4; | ||||
|  | ||||
| 	/// 4 components vector of high double-precision floating-point numbers. | ||||
| 	typedef tvec4<double, aligned_highp>	aligned_highp_dvec4; | ||||
|  | ||||
| 	/// 4 components vector of medium double-precision floating-point numbers. | ||||
| 	typedef tvec4<double, aligned_mediump>	aligned_mediump_dvec4; | ||||
|  | ||||
| 	/// 4 components vector of low double-precision floating-point numbers. | ||||
| 	typedef tvec4<double, aligned_lowp>		aligned_lowp_dvec4; | ||||
|  | ||||
| 	/// 4 components vector of high precision signed integer numbers. | ||||
| 	typedef tvec4<int, aligned_highp>		aligned_highp_ivec4; | ||||
|  | ||||
| 	/// 4 components vector of medium precision signed integer numbers. | ||||
| 	typedef tvec4<int, aligned_mediump>		aligned_mediump_ivec4; | ||||
|  | ||||
| 	/// 4 components vector of low precision signed integer numbers. | ||||
| 	typedef tvec4<int, aligned_lowp>		aligned_lowp_ivec4; | ||||
|  | ||||
| 	/// 4 components vector of high precision unsigned integer numbers. | ||||
| 	typedef tvec4<uint, aligned_highp>		aligned_highp_uvec4; | ||||
|  | ||||
| 	/// 4 components vector of medium precision unsigned integer numbers. | ||||
| 	typedef tvec4<uint, aligned_mediump>	aligned_mediump_uvec4; | ||||
|  | ||||
| 	/// 4 components vector of low precision unsigned integer numbers. | ||||
| 	typedef tvec4<uint, aligned_lowp>		aligned_lowp_uvec4; | ||||
|  | ||||
| 	/// 4 components vector of high precision bool numbers. | ||||
| 	typedef tvec4<bool, aligned_highp>		aligned_highp_bvec4; | ||||
|  | ||||
| 	/// 4 components vector of medium precision bool numbers. | ||||
| 	typedef tvec4<bool, aligned_mediump>	aligned_mediump_bvec4; | ||||
|  | ||||
| 	/// 4 components vector of low precision bool numbers. | ||||
| 	typedef tvec4<bool, aligned_lowp>		aligned_lowp_bvec4; | ||||
|  | ||||
| 	// -- default -- | ||||
|  | ||||
| #if(defined(GLM_PRECISION_LOWP_FLOAT)) | ||||
| 	typedef aligned_lowp_vec1			aligned_vec1; | ||||
| 	typedef aligned_lowp_vec2			aligned_vec2; | ||||
| 	typedef aligned_lowp_vec3			aligned_vec3; | ||||
| 	typedef aligned_lowp_vec4			aligned_vec4; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) | ||||
| 	typedef aligned_mediump_vec1		aligned_vec1; | ||||
| 	typedef aligned_mediump_vec2		aligned_vec2; | ||||
| 	typedef aligned_mediump_vec3		aligned_vec3; | ||||
| 	typedef aligned_mediump_vec4		aligned_vec4; | ||||
| #else //defined(GLM_PRECISION_HIGHP_FLOAT) | ||||
| 	/// 1 component vector of floating-point numbers. | ||||
| 	typedef aligned_highp_vec1			aligned_vec1; | ||||
|  | ||||
| 	/// 2 components vector of floating-point numbers. | ||||
| 	typedef aligned_highp_vec2			aligned_vec2; | ||||
|  | ||||
| 	/// 3 components vector of floating-point numbers. | ||||
| 	typedef aligned_highp_vec3			aligned_vec3; | ||||
|  | ||||
| 	/// 4 components vector of floating-point numbers. | ||||
| 	typedef aligned_highp_vec4			aligned_vec4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_LOWP_DOUBLE)) | ||||
| 	typedef aligned_lowp_dvec1			aligned_dvec1; | ||||
| 	typedef aligned_lowp_dvec2			aligned_dvec2; | ||||
| 	typedef aligned_lowp_dvec3			aligned_dvec3; | ||||
| 	typedef aligned_lowp_dvec4			aligned_dvec4; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) | ||||
| 	typedef aligned_mediump_dvec1		aligned_dvec1; | ||||
| 	typedef aligned_mediump_dvec2		aligned_dvec2; | ||||
| 	typedef aligned_mediump_dvec3		aligned_dvec3; | ||||
| 	typedef aligned_mediump_dvec4		aligned_dvec4; | ||||
| #else //defined(GLM_PRECISION_HIGHP_DOUBLE) | ||||
| 	/// 1 component vector of double-precision floating-point numbers. | ||||
| 	typedef aligned_highp_dvec1			aligned_dvec1; | ||||
|  | ||||
| 	/// 2 components vector of double-precision floating-point numbers. | ||||
| 	typedef aligned_highp_dvec2			aligned_dvec2; | ||||
|  | ||||
| 	/// 3 components vector of double-precision floating-point numbers. | ||||
| 	typedef aligned_highp_dvec3			aligned_dvec3; | ||||
|  | ||||
| 	/// 4 components vector of double-precision floating-point numbers. | ||||
| 	typedef aligned_highp_dvec4			aligned_dvec4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_LOWP_INT)) | ||||
| 	typedef aligned_lowp_ivec1			aligned_ivec1; | ||||
| 	typedef aligned_lowp_ivec2			aligned_ivec2; | ||||
| 	typedef aligned_lowp_ivec3			aligned_ivec3; | ||||
| 	typedef aligned_lowp_ivec4			aligned_ivec4; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_INT)) | ||||
| 	typedef aligned_mediump_ivec1		aligned_ivec1; | ||||
| 	typedef aligned_mediump_ivec2		aligned_ivec2; | ||||
| 	typedef aligned_mediump_ivec3		aligned_ivec3; | ||||
| 	typedef aligned_mediump_ivec4		aligned_ivec4; | ||||
| #else //defined(GLM_PRECISION_HIGHP_INT) | ||||
| 	/// 1 component vector of signed integer numbers. | ||||
| 	typedef aligned_highp_ivec1			aligned_ivec1; | ||||
|  | ||||
| 	/// 2 components vector of signed integer numbers. | ||||
| 	typedef aligned_highp_ivec2			aligned_ivec2; | ||||
|  | ||||
| 	/// 3 components vector of signed integer numbers. | ||||
| 	typedef aligned_highp_ivec3			aligned_ivec3; | ||||
|  | ||||
| 	/// 4 components vector of signed integer numbers. | ||||
| 	typedef aligned_highp_ivec4			aligned_ivec4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| 	// -- Unsigned integer definition -- | ||||
|  | ||||
| #if(defined(GLM_PRECISION_LOWP_UINT)) | ||||
| 	typedef aligned_lowp_uvec1			aligned_uvec1; | ||||
| 	typedef aligned_lowp_uvec2			aligned_uvec2; | ||||
| 	typedef aligned_lowp_uvec3			aligned_uvec3; | ||||
| 	typedef aligned_lowp_uvec4			aligned_uvec4; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_UINT)) | ||||
| 	typedef aligned_mediump_uvec1		aligned_uvec1; | ||||
| 	typedef aligned_mediump_uvec2		aligned_uvec2; | ||||
| 	typedef aligned_mediump_uvec3		aligned_uvec3; | ||||
| 	typedef aligned_mediump_uvec4		aligned_uvec4; | ||||
| #else //defined(GLM_PRECISION_HIGHP_UINT) | ||||
| 	/// 1 component vector of unsigned integer numbers. | ||||
| 	typedef aligned_highp_uvec1			aligned_uvec1; | ||||
|  | ||||
| 	/// 2 components vector of unsigned integer numbers. | ||||
| 	typedef aligned_highp_uvec2			aligned_uvec2; | ||||
|  | ||||
| 	/// 3 components vector of unsigned integer numbers. | ||||
| 	typedef aligned_highp_uvec3			aligned_uvec3; | ||||
|  | ||||
| 	/// 4 components vector of unsigned integer numbers. | ||||
| 	typedef aligned_highp_uvec4			aligned_uvec4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_LOWP_BOOL)) | ||||
| 	typedef aligned_lowp_bvec1			aligned_bvec1; | ||||
| 	typedef aligned_lowp_bvec2			aligned_bvec2; | ||||
| 	typedef aligned_lowp_bvec3			aligned_bvec3; | ||||
| 	typedef aligned_lowp_bvec4			aligned_bvec4; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) | ||||
| 	typedef aligned_mediump_bvec1		aligned_bvec1; | ||||
| 	typedef aligned_mediump_bvec2		aligned_bvec2; | ||||
| 	typedef aligned_mediump_bvec3		aligned_bvec3; | ||||
| 	typedef aligned_mediump_bvec4		aligned_bvec4; | ||||
| #else //defined(GLM_PRECISION_HIGHP_BOOL) | ||||
| 	/// 1 component vector of boolean. | ||||
| 	typedef aligned_highp_bvec1			aligned_bvec1; | ||||
|  | ||||
| 	/// 2 components vector of boolean. | ||||
| 	typedef aligned_highp_bvec2			aligned_bvec2; | ||||
|  | ||||
| 	/// 3 components vector of boolean. | ||||
| 	typedef aligned_highp_bvec3			aligned_bvec3; | ||||
|  | ||||
| 	/// 4 components vector of boolean. | ||||
| 	typedef aligned_highp_bvec4			aligned_bvec4; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
							
								
								
									
										861
									
								
								lib/glm/gtc/type_precision.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										861
									
								
								lib/glm/gtc/type_precision.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,861 @@ | ||||
| /// @ref gtc_type_precision | ||||
| /// @file glm/gtc/type_precision.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtc_quaternion (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_type_precision GLM_GTC_type_precision | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Defines specific C++-based precision types. | ||||
| ///  | ||||
| /// @ref core_precision defines types based on GLSL's precision qualifiers. This | ||||
| /// extension defines types based on explicitly-sized C++ data types. | ||||
| /// | ||||
| /// <glm/gtc/type_precision.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../gtc/quaternion.hpp" | ||||
| #include "../gtc/vec1.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../mat2x2.hpp" | ||||
| #include "../mat2x3.hpp" | ||||
| #include "../mat2x4.hpp" | ||||
| #include "../mat3x2.hpp" | ||||
| #include "../mat3x3.hpp" | ||||
| #include "../mat3x4.hpp" | ||||
| #include "../mat4x2.hpp" | ||||
| #include "../mat4x3.hpp" | ||||
| #include "../mat4x4.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_type_precision extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/////////////////////////// | ||||
| 	// Signed int vector types  | ||||
|  | ||||
| 	/// @addtogroup gtc_type_precision | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Low precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 lowp_int8; | ||||
| 	 | ||||
| 	/// Low precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 lowp_int16; | ||||
|  | ||||
| 	/// Low precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 lowp_int32; | ||||
|  | ||||
| 	/// Low precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 lowp_int64; | ||||
|  | ||||
| 	/// Low precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 lowp_int8_t; | ||||
| 	 | ||||
| 	/// Low precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 lowp_int16_t; | ||||
|  | ||||
| 	/// Low precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 lowp_int32_t; | ||||
|  | ||||
| 	/// Low precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 lowp_int64_t; | ||||
|  | ||||
| 	/// Low precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 lowp_i8; | ||||
| 	 | ||||
| 	/// Low precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 lowp_i16; | ||||
|  | ||||
| 	/// Low precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 lowp_i32; | ||||
|  | ||||
| 	/// Low precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 lowp_i64; | ||||
|  | ||||
| 	/// Medium precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 mediump_int8; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 mediump_int16; | ||||
|  | ||||
| 	/// Medium precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 mediump_int32; | ||||
|  | ||||
| 	/// Medium precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 mediump_int64; | ||||
|  | ||||
| 	/// Medium precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 mediump_int8_t; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 mediump_int16_t; | ||||
|  | ||||
| 	/// Medium precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 mediump_int32_t; | ||||
|  | ||||
| 	/// Medium precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 mediump_int64_t; | ||||
|  | ||||
| 	/// Medium precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 mediump_i8; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 mediump_i16; | ||||
|  | ||||
| 	/// Medium precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 mediump_i32; | ||||
|  | ||||
| 	/// Medium precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 mediump_i64; | ||||
|  | ||||
| 	/// High precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 highp_int8; | ||||
| 	 | ||||
| 	/// High precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 highp_int16; | ||||
|  | ||||
| 	/// High precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 highp_int32; | ||||
|  | ||||
| 	/// High precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 highp_int64; | ||||
|  | ||||
| 	/// High precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 highp_int8_t; | ||||
| 	 | ||||
| 	/// High precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 highp_int16_t; | ||||
|  | ||||
| 	/// 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 highp_int32_t; | ||||
|  | ||||
| 	/// High precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 highp_int64_t; | ||||
|  | ||||
| 	/// High precision 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 highp_i8; | ||||
| 	 | ||||
| 	/// High precision 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 highp_i16; | ||||
|  | ||||
| 	/// High precision 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 highp_i32; | ||||
|  | ||||
| 	/// High precision 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 highp_i64; | ||||
| 	 | ||||
|  | ||||
| 	/// 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 int8; | ||||
| 	 | ||||
| 	/// 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 int16; | ||||
|  | ||||
| 	/// 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 int32; | ||||
|  | ||||
| 	/// 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 int64; | ||||
|  | ||||
| #if GLM_HAS_EXTENDED_INTEGER_TYPE | ||||
| 	using std::int8_t; | ||||
| 	using std::int16_t; | ||||
| 	using std::int32_t; | ||||
| 	using std::int64_t; | ||||
| #else | ||||
| 	/// 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 int8_t; | ||||
| 	 | ||||
| 	/// 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 int16_t; | ||||
|  | ||||
| 	/// 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 int32_t; | ||||
|  | ||||
| 	/// 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 int64_t; | ||||
| #endif | ||||
|  | ||||
| 	/// 8 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int8 i8; | ||||
| 	 | ||||
| 	/// 16 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int16 i16; | ||||
|  | ||||
| 	/// 32 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int32 i32; | ||||
|  | ||||
| 	/// 64 bit signed integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::int64 i64; | ||||
|  | ||||
|  | ||||
| 	/// 8 bit signed integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<i8, defaultp> i8vec1; | ||||
| 	 | ||||
| 	/// 8 bit signed integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<i8, defaultp> i8vec2; | ||||
|  | ||||
| 	/// 8 bit signed integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<i8, defaultp> i8vec3; | ||||
|  | ||||
| 	/// 8 bit signed integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<i8, defaultp> i8vec4; | ||||
|  | ||||
|  | ||||
| 	/// 16 bit signed integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<i16, defaultp> i16vec1; | ||||
| 	 | ||||
| 	/// 16 bit signed integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<i16, defaultp> i16vec2; | ||||
|  | ||||
| 	/// 16 bit signed integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<i16, defaultp> i16vec3; | ||||
|  | ||||
| 	/// 16 bit signed integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<i16, defaultp> i16vec4; | ||||
|  | ||||
|  | ||||
| 	/// 32 bit signed integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<i32, defaultp> i32vec1; | ||||
| 	 | ||||
| 	/// 32 bit signed integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<i32, defaultp> i32vec2; | ||||
|  | ||||
| 	/// 32 bit signed integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<i32, defaultp> i32vec3; | ||||
|  | ||||
| 	/// 32 bit signed integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<i32, defaultp> i32vec4; | ||||
|  | ||||
|  | ||||
| 	/// 64 bit signed integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<i64, defaultp> i64vec1; | ||||
| 	 | ||||
| 	/// 64 bit signed integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<i64, defaultp> i64vec2; | ||||
|  | ||||
| 	/// 64 bit signed integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<i64, defaultp> i64vec3; | ||||
|  | ||||
| 	/// 64 bit signed integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<i64, defaultp> i64vec4; | ||||
|  | ||||
|  | ||||
| 	///////////////////////////// | ||||
| 	// Unsigned int vector types | ||||
|  | ||||
| 	/// Low precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 lowp_uint8; | ||||
| 	 | ||||
| 	/// Low precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 lowp_uint16; | ||||
|  | ||||
| 	/// Low precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 lowp_uint32; | ||||
|  | ||||
| 	/// Low precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 lowp_uint64; | ||||
|  | ||||
| 	/// Low precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 lowp_uint8_t; | ||||
| 	 | ||||
| 	/// Low precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 lowp_uint16_t; | ||||
|  | ||||
| 	/// Low precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 lowp_uint32_t; | ||||
|  | ||||
| 	/// Low precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 lowp_uint64_t; | ||||
|  | ||||
| 	/// Low precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 lowp_u8; | ||||
| 	 | ||||
| 	/// Low precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 lowp_u16; | ||||
|  | ||||
| 	/// Low precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 lowp_u32; | ||||
|  | ||||
| 	/// Low precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 lowp_u64; | ||||
| 	 | ||||
| 	/// Medium precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 mediump_uint8; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 mediump_uint16; | ||||
|  | ||||
| 	/// Medium precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 mediump_uint32; | ||||
|  | ||||
| 	/// Medium precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 mediump_uint64; | ||||
|  | ||||
| 	/// Medium precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 mediump_uint8_t; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 mediump_uint16_t; | ||||
|  | ||||
| 	/// Medium precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 mediump_uint32_t; | ||||
|  | ||||
| 	/// Medium precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 mediump_uint64_t; | ||||
|  | ||||
| 	/// Medium precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 mediump_u8; | ||||
| 	 | ||||
| 	/// Medium precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 mediump_u16; | ||||
|  | ||||
| 	/// Medium precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 mediump_u32; | ||||
|  | ||||
| 	/// Medium precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 mediump_u64; | ||||
| 	 | ||||
| 	/// High precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 highp_uint8; | ||||
| 	 | ||||
| 	/// High precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 highp_uint16; | ||||
|  | ||||
| 	/// High precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 highp_uint32; | ||||
|  | ||||
| 	/// High precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 highp_uint64; | ||||
|  | ||||
| 	/// High precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 highp_uint8_t; | ||||
| 	 | ||||
| 	/// High precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 highp_uint16_t; | ||||
|  | ||||
| 	/// High precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 highp_uint32_t; | ||||
|  | ||||
| 	/// High precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 highp_uint64_t; | ||||
|  | ||||
| 	/// High precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 highp_u8; | ||||
| 	 | ||||
| 	/// High precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 highp_u16; | ||||
|  | ||||
| 	/// High precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 highp_u32; | ||||
|  | ||||
| 	/// High precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 highp_u64; | ||||
|  | ||||
| 	/// Default precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 uint8; | ||||
| 	 | ||||
| 	/// Default precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 uint16; | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 uint32; | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 uint64; | ||||
|  | ||||
| #if GLM_HAS_EXTENDED_INTEGER_TYPE | ||||
| 	using std::uint8_t; | ||||
| 	using std::uint16_t; | ||||
| 	using std::uint32_t; | ||||
| 	using std::uint64_t; | ||||
| #else | ||||
| 	/// Default precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 uint8_t; | ||||
| 	 | ||||
| 	/// Default precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 uint16_t; | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 uint32_t; | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 uint64_t; | ||||
| #endif | ||||
|  | ||||
| 	/// Default precision 8 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint8 u8; | ||||
| 	 | ||||
| 	/// Default precision 16 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint16 u16; | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint32 u32; | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::uint64 u64; | ||||
|  | ||||
|  | ||||
|  | ||||
| 	/// Default precision 8 bit unsigned integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<u8, defaultp> u8vec1; | ||||
| 	 | ||||
| 	/// Default precision 8 bit unsigned integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<u8, defaultp> u8vec2; | ||||
|  | ||||
| 	/// Default precision 8 bit unsigned integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<u8, defaultp> u8vec3; | ||||
|  | ||||
| 	/// Default precision 8 bit unsigned integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<u8, defaultp> u8vec4; | ||||
|  | ||||
|  | ||||
| 	/// Default precision 16 bit unsigned integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<u16, defaultp> u16vec1; | ||||
| 	 | ||||
| 	/// Default precision 16 bit unsigned integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<u16, defaultp> u16vec2; | ||||
|  | ||||
| 	/// Default precision 16 bit unsigned integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<u16, defaultp> u16vec3; | ||||
|  | ||||
| 	/// Default precision 16 bit unsigned integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<u16, defaultp> u16vec4; | ||||
|  | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<u32, defaultp> u32vec1; | ||||
| 	 | ||||
| 	/// Default precision 32 bit unsigned integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<u32, defaultp> u32vec2; | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<u32, defaultp> u32vec3; | ||||
|  | ||||
| 	/// Default precision 32 bit unsigned integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<u32, defaultp> u32vec4; | ||||
|  | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer scalar type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<u64, defaultp> u64vec1; | ||||
| 	 | ||||
| 	/// Default precision 64 bit unsigned integer vector of 2 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<u64, defaultp> u64vec2; | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer vector of 3 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<u64, defaultp> u64vec3; | ||||
|  | ||||
| 	/// Default precision 64 bit unsigned integer vector of 4 components type. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<u64, defaultp> u64vec4; | ||||
|  | ||||
|  | ||||
| 	////////////////////// | ||||
| 	// Float vector types | ||||
|  | ||||
| 	/// 32 bit single-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::float32 float32; | ||||
|  | ||||
| 	/// 64 bit double-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::float64 float64; | ||||
|  | ||||
|  | ||||
| 	/// 32 bit single-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::float32 float32_t; | ||||
|  | ||||
| 	/// 64 bit double-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef detail::float64 float64_t; | ||||
|  | ||||
|  | ||||
| 	/// 32 bit single-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef float32 f32; | ||||
|  | ||||
| 	/// 64 bit double-precision floating-point scalar. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef float64 f64; | ||||
|  | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 1 component. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<float, defaultp> fvec1; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 2 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<float, defaultp> fvec2; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 3 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<float, defaultp> fvec3; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 4 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<float, defaultp> fvec4; | ||||
|  | ||||
| 	 | ||||
| 	/// Single-precision floating-point vector of 1 component. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<f32, defaultp> f32vec1; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 2 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<f32, defaultp> f32vec2; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 3 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<f32, defaultp> f32vec3; | ||||
|  | ||||
| 	/// Single-precision floating-point vector of 4 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<f32, defaultp> f32vec4; | ||||
|  | ||||
|  | ||||
| 	/// Double-precision floating-point vector of 1 component. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec1<f64, defaultp> f64vec1; | ||||
|  | ||||
| 	/// Double-precision floating-point vector of 2 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec2<f64, defaultp> f64vec2; | ||||
|  | ||||
| 	/// Double-precision floating-point vector of 3 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec3<f64, defaultp> f64vec3; | ||||
|  | ||||
| 	/// Double-precision floating-point vector of 4 components. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tvec4<f64, defaultp> f64vec4; | ||||
|  | ||||
|  | ||||
| 	////////////////////// | ||||
| 	// Float matrix types  | ||||
|  | ||||
| 	/// Single-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef detail::tmat1x1<f32> fmat1; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f32, defaultp> fmat2; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f32, defaultp> fmat3; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f32, defaultp> fmat4; | ||||
|  | ||||
|  | ||||
| 	/// Single-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef f32 fmat1x1; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f32, defaultp> fmat2x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x3<f32, defaultp> fmat2x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x4<f32, defaultp> fmat2x4; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x2<f32, defaultp> fmat3x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f32, defaultp> fmat3x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x4<f32, defaultp> fmat3x4; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x2<f32, defaultp> fmat4x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x3<f32, defaultp> fmat4x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f32, defaultp> fmat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Single-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef detail::tmat1x1<f32, defaultp> f32mat1; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f32, defaultp> f32mat2; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f32, defaultp> f32mat3; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f32, defaultp> f32mat4; | ||||
|  | ||||
|  | ||||
| 	/// Single-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef f32 f32mat1x1; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f32, defaultp> f32mat2x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x3<f32, defaultp> f32mat2x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 2x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x4<f32, defaultp> f32mat2x4; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x2<f32, defaultp> f32mat3x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f32, defaultp> f32mat3x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 3x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x4<f32, defaultp> f32mat3x4; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x2<f32, defaultp> f32mat4x2; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x3<f32, defaultp> f32mat4x3; | ||||
|  | ||||
| 	/// Single-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f32, defaultp> f32mat4x4; | ||||
|  | ||||
|  | ||||
| 	/// Double-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef detail::tmat1x1<f64, defaultp> f64mat1; | ||||
|  | ||||
| 	/// Double-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f64, defaultp> f64mat2; | ||||
|  | ||||
| 	/// Double-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f64, defaultp> f64mat3; | ||||
|  | ||||
| 	/// Double-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f64, defaultp> f64mat4; | ||||
|  | ||||
|  | ||||
| 	/// Double-precision floating-point 1x1 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	//typedef f64 f64mat1x1; | ||||
|  | ||||
| 	/// Double-precision floating-point 2x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x2<f64, defaultp> f64mat2x2; | ||||
|  | ||||
| 	/// Double-precision floating-point 2x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x3<f64, defaultp> f64mat2x3; | ||||
|  | ||||
| 	/// Double-precision floating-point 2x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat2x4<f64, defaultp> f64mat2x4; | ||||
|  | ||||
| 	/// Double-precision floating-point 3x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x2<f64, defaultp> f64mat3x2; | ||||
|  | ||||
| 	/// Double-precision floating-point 3x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x3<f64, defaultp> f64mat3x3; | ||||
|  | ||||
| 	/// Double-precision floating-point 3x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat3x4<f64, defaultp> f64mat3x4; | ||||
|  | ||||
| 	/// Double-precision floating-point 4x2 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x2<f64, defaultp> f64mat4x2; | ||||
|  | ||||
| 	/// Double-precision floating-point 4x3 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x3<f64, defaultp> f64mat4x3; | ||||
|  | ||||
| 	/// Double-precision floating-point 4x4 matrix. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tmat4x4<f64, defaultp> f64mat4x4; | ||||
|  | ||||
|  | ||||
| 	////////////////////////// | ||||
| 	// Quaternion types | ||||
|  | ||||
| 	/// Single-precision floating-point quaternion. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tquat<f32, defaultp> f32quat; | ||||
|  | ||||
| 	/// Double-precision floating-point quaternion. | ||||
| 	/// @see gtc_type_precision | ||||
| 	typedef tquat<f64, defaultp> f64quat; | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "type_precision.inl" | ||||
							
								
								
									
										7
									
								
								lib/glm/gtc/type_precision.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								lib/glm/gtc/type_precision.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,7 @@ | ||||
| /// @ref gtc_swizzle | ||||
| /// @file glm/gtc/swizzle.inl | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
|  | ||||
| } | ||||
							
								
								
									
										149
									
								
								lib/glm/gtc/type_ptr.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								lib/glm/gtc/type_ptr.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,149 @@ | ||||
| /// @ref gtc_type_ptr | ||||
| /// @file glm/gtc/type_ptr.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// @see gtc_half_float (dependence) | ||||
| /// @see gtc_quaternion (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_type_ptr GLM_GTC_type_ptr | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Handles the interaction between pointers and vector, matrix types. | ||||
| /// | ||||
| /// This extension defines an overloaded function, glm::value_ptr, which | ||||
| /// takes any of the \ref core_template "core template types". It returns | ||||
| /// a pointer to the memory layout of the object. Matrix types store their values | ||||
| /// in column-major order. | ||||
| ///  | ||||
| /// This is useful for uploading data to matrices or copying data to buffer objects. | ||||
| /// | ||||
| /// Example: | ||||
| /// @code | ||||
| /// #include <glm/glm.hpp> | ||||
| /// #include <glm/gtc/type_ptr.hpp> | ||||
| /// | ||||
| /// glm::vec3 aVector(3); | ||||
| /// glm::mat4 someMatrix(1.0); | ||||
| /// | ||||
| /// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector)); | ||||
| /// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix)); | ||||
| /// @endcode | ||||
| /// | ||||
| /// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../gtc/quaternion.hpp" | ||||
| #include "../vec2.hpp" | ||||
| #include "../vec3.hpp" | ||||
| #include "../vec4.hpp" | ||||
| #include "../mat2x2.hpp" | ||||
| #include "../mat2x3.hpp" | ||||
| #include "../mat2x4.hpp" | ||||
| #include "../mat3x2.hpp" | ||||
| #include "../mat3x3.hpp" | ||||
| #include "../mat3x4.hpp" | ||||
| #include "../mat4x2.hpp" | ||||
| #include "../mat4x3.hpp" | ||||
| #include "../mat4x4.hpp" | ||||
| #include <cstring> | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_type_ptr extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_type_ptr | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Return the constant address to the data of the input parameter. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename genType> | ||||
| 	GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const & vec); | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tvec2<T, defaultp> make_vec2(T const * const ptr); | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tvec3<T, defaultp> make_vec3(T const * const ptr); | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tvec4<T, defaultp> make_vec4(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2x2(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat2x3<T, defaultp> make_mat2x3(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat2x4<T, defaultp> make_mat2x4(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat3x2<T, defaultp> make_mat3x2(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3x3(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat3x4<T, defaultp> make_mat3x4(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat4x2<T, defaultp> make_mat4x2(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat4x3<T, defaultp> make_mat4x3(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4x4(T const * const ptr); | ||||
| 	 | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2(T const * const ptr); | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3(T const * const ptr); | ||||
| 		 | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4(T const * const ptr); | ||||
|  | ||||
| 	/// Build a quaternion from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T> | ||||
| 	GLM_FUNC_DECL tquat<T, defaultp> make_quat(T const * const ptr); | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
| #include "type_ptr.inl" | ||||
							
								
								
									
										450
									
								
								lib/glm/gtc/type_ptr.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										450
									
								
								lib/glm/gtc/type_ptr.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,450 @@ | ||||
| /// @ref gtc_type_ptr | ||||
| /// @file glm/gtc/type_ptr.inl | ||||
|  | ||||
| #include <cstring> | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_type_ptr | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Return the constant address to the data of the vector input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tvec2<T, P> const & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the vector input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tvec2<T, P> & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the constant address to the data of the vector input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tvec3<T, P> const & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the vector input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tvec3<T, P> & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the vector input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	(	 | ||||
| 		tvec4<T, P> const & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the vector input. | ||||
| 	//! From GLM_GTC_type_ptr extension. | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	(	 | ||||
| 		tvec4<T, P> & vec | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(vec.x); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat2x2<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat2x2<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat3x3<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat3x3<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat4x4<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	//! From GLM_GTC_type_ptr extension. | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat4x4<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat2x3<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat2x3<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat3x2<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat3x2<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat2x4<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat2x4<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat4x2<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	(	 | ||||
| 		tmat4x2<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat3x4<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	//! Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tmat3x4<T, P> & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
| 		 | ||||
| 	/// Return the constant address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tmat4x3<T, P> const & mat | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the address to the data of the matrix input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr(tmat4x3<T, P> & mat) | ||||
| 	{ | ||||
| 		return &(mat[0].x); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the constant address to the data of the input parameter. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T const * value_ptr | ||||
| 	( | ||||
| 		tquat<T, P> const & q | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(q[0]); | ||||
| 	} | ||||
|  | ||||
| 	/// Return the address to the data of the quaternion input. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template<typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER T * value_ptr | ||||
| 	( | ||||
| 		tquat<T, P> & q | ||||
| 	) | ||||
| 	{ | ||||
| 		return &(q[0]); | ||||
| 	} | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec2<T, defaultp> make_vec2(T const * const ptr) | ||||
| 	{ | ||||
| 		tvec2<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tvec2<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, defaultp> make_vec3(T const * const ptr) | ||||
| 	{ | ||||
| 		tvec3<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tvec3<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a vector from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tvec4<T, defaultp> make_vec4(T const * const ptr) | ||||
| 	{ | ||||
| 		tvec4<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tvec4<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2x2(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat2x2<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat2x2<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat2x3<T, defaultp> make_mat2x3(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat2x3<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat2x3<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat2x4<T, defaultp> make_mat2x4(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat2x4<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat2x4<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x2<T, defaultp> make_mat3x2(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat3x2<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat3x2<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3x3(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat3x3<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat3x3<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x4<T, defaultp> make_mat3x4(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat3x4<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat3x4<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x2<T, defaultp> make_mat4x2(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat4x2<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat4x2<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x3<T, defaultp> make_mat4x3(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat4x3<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat4x3<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4x4(T const * const ptr) | ||||
| 	{ | ||||
| 		tmat4x4<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tmat4x4<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2(T const * const ptr) | ||||
| 	{ | ||||
| 		return make_mat2x2(ptr); | ||||
| 	} | ||||
|  | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3(T const * const ptr) | ||||
| 	{ | ||||
| 		return make_mat3x3(ptr); | ||||
| 	} | ||||
| 		 | ||||
| 	//! Build a matrix from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4(T const * const ptr) | ||||
| 	{ | ||||
| 		return make_mat4x4(ptr); | ||||
| 	} | ||||
|  | ||||
| 	//! Build a quaternion from a pointer. | ||||
| 	/// @see gtc_type_ptr | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const * const ptr) | ||||
| 	{ | ||||
| 		tquat<T, defaultp> Result; | ||||
| 		memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>)); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	/// @} | ||||
| }//namespace glm | ||||
|  | ||||
							
								
								
									
										63
									
								
								lib/glm/gtc/ulp.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								lib/glm/gtc/ulp.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,63 @@ | ||||
| /// @ref gtc_ulp | ||||
| /// @file glm/gtc/ulp.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_ulp GLM_GTC_ulp | ||||
| /// @ingroup gtc | ||||
| /// | ||||
| /// @brief Allow the measurement of the accuracy of a function against a reference  | ||||
| /// implementation. This extension works on floating-point data and provide results  | ||||
| /// in ULP. | ||||
| /// <glm/gtc/ulp.hpp> need to be included to use these features. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependencies | ||||
| #include "../detail/setup.hpp" | ||||
| #include "../detail/precision.hpp" | ||||
| #include "../detail/type_int.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_ulp extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// @addtogroup gtc_ulp | ||||
| 	/// @{ | ||||
|  | ||||
| 	/// Return the next ULP value(s) after the input value(s). | ||||
| 	/// @see gtc_ulp | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType next_float(genType const & x); | ||||
|  | ||||
| 	/// Return the previous ULP value(s) before the input value(s). | ||||
| 	/// @see gtc_ulp | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType prev_float(genType const & x); | ||||
|  | ||||
| 	/// Return the value(s) ULP distance after the input value(s). | ||||
| 	/// @see gtc_ulp | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance); | ||||
|  | ||||
| 	/// Return the value(s) ULP distance before the input value(s). | ||||
| 	/// @see gtc_ulp | ||||
| 	template <typename genType> | ||||
| 	GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance); | ||||
| 	 | ||||
| 	/// Return the distance in the number of ULP between 2 scalars. | ||||
| 	/// @see gtc_ulp | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_DECL uint float_distance(T const & x, T const & y); | ||||
|  | ||||
| 	/// Return the distance in the number of ULP between 2 vectors. | ||||
| 	/// @see gtc_ulp | ||||
| 	template<typename T, template<typename> class vecType> | ||||
| 	GLM_FUNC_DECL vecType<uint> float_distance(vecType<T> const & x, vecType<T> const & y); | ||||
| 	 | ||||
| 	/// @} | ||||
| }// namespace glm | ||||
|  | ||||
| #include "ulp.inl" | ||||
							
								
								
									
										321
									
								
								lib/glm/gtc/ulp.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										321
									
								
								lib/glm/gtc/ulp.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,321 @@ | ||||
| /// @ref gtc_ulp | ||||
| /// @file glm/gtc/ulp.inl | ||||
| /// | ||||
| /// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||
| /// | ||||
| /// Developed at SunPro, a Sun Microsystems, Inc. business. | ||||
| /// Permission to use, copy, modify, and distribute this | ||||
| /// software is freely granted, provided that this notice | ||||
| /// is preserved. | ||||
|  | ||||
| #include "../detail/type_int.hpp" | ||||
| #include <cmath> | ||||
| #include <cfloat> | ||||
| #include <limits> | ||||
|  | ||||
| #if(GLM_COMPILER & GLM_COMPILER_VC) | ||||
| #	pragma warning(push) | ||||
| #	pragma warning(disable : 4127) | ||||
| #endif | ||||
|  | ||||
| typedef union | ||||
| { | ||||
| 	float value; | ||||
| 	/* FIXME: Assumes 32 bit int.  */ | ||||
| 	unsigned int word; | ||||
| } ieee_float_shape_type; | ||||
|  | ||||
| typedef union | ||||
| { | ||||
| 	double value; | ||||
| 	struct | ||||
| 	{ | ||||
| 		glm::detail::int32 lsw; | ||||
| 		glm::detail::int32 msw; | ||||
| 	} parts; | ||||
| } ieee_double_shape_type; | ||||
|  | ||||
| #define GLM_EXTRACT_WORDS(ix0,ix1,d)		\ | ||||
| 	do {									\ | ||||
| 		ieee_double_shape_type ew_u;		\ | ||||
| 		ew_u.value = (d);					\ | ||||
| 		(ix0) = ew_u.parts.msw;				\ | ||||
| 		(ix1) = ew_u.parts.lsw;				\ | ||||
| 	} while (0) | ||||
|  | ||||
| #define GLM_GET_FLOAT_WORD(i,d)				\ | ||||
| 	do {									\ | ||||
| 		ieee_float_shape_type gf_u;			\ | ||||
| 		gf_u.value = (d);					\ | ||||
| 		(i) = gf_u.word;					\ | ||||
| 	} while (0) | ||||
|  | ||||
| #define GLM_SET_FLOAT_WORD(d,i)				\ | ||||
| 	do {									\ | ||||
| 		ieee_float_shape_type sf_u;			\ | ||||
| 		sf_u.word = (i);					\ | ||||
| 		(d) = sf_u.value;					\ | ||||
| 	} while (0) | ||||
|  | ||||
| #define GLM_INSERT_WORDS(d,ix0,ix1)			\ | ||||
| 	do {									\ | ||||
| 		ieee_double_shape_type iw_u;		\ | ||||
| 		iw_u.parts.msw = (ix0);				\ | ||||
| 		iw_u.parts.lsw = (ix1);				\ | ||||
| 		(d) = iw_u.value;					\ | ||||
| 	} while (0) | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	GLM_FUNC_QUALIFIER float nextafterf(float x, float y) | ||||
| 	{ | ||||
| 		volatile float t; | ||||
| 		glm::detail::int32 hx, hy, ix, iy; | ||||
|  | ||||
| 		GLM_GET_FLOAT_WORD(hx, x); | ||||
| 		GLM_GET_FLOAT_WORD(hy, y); | ||||
| 		ix = hx&0x7fffffff;		// |x| | ||||
| 		iy = hy&0x7fffffff;		// |y| | ||||
|  | ||||
| 		if((ix>0x7f800000) ||	// x is nan  | ||||
| 			(iy>0x7f800000))	// y is nan  | ||||
| 			return x+y; | ||||
| 		if(x==y) return y;		// x=y, return y | ||||
| 		if(ix==0) {				// x == 0 | ||||
| 			GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal | ||||
| 			t = x*x; | ||||
| 			if(t==x) return t; else return x;	// raise underflow flag | ||||
| 		} | ||||
| 		if(hx>=0) {				// x > 0  | ||||
| 			if(hx>hy) {			// x > y, x -= ulp | ||||
| 				hx -= 1; | ||||
| 			} else {			// x < y, x += ulp | ||||
| 				hx += 1; | ||||
| 			} | ||||
| 		} else {				// x < 0 | ||||
| 			if(hy>=0||hx>hy){	// x < y, x -= ulp | ||||
| 				hx -= 1; | ||||
| 			} else {			// x > y, x += ulp | ||||
| 				hx += 1; | ||||
| 			} | ||||
| 		} | ||||
| 		hy = hx&0x7f800000; | ||||
| 		if(hy>=0x7f800000) return x+x;  // overflow | ||||
| 		if(hy<0x00800000) {             // underflow | ||||
| 			t = x*x; | ||||
| 			if(t!=x) {          // raise underflow flag | ||||
| 				GLM_SET_FLOAT_WORD(y,hx); | ||||
| 				return y; | ||||
| 			} | ||||
| 		} | ||||
| 		GLM_SET_FLOAT_WORD(x,hx); | ||||
| 		return x; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER double nextafter(double x, double y) | ||||
| 	{ | ||||
| 		volatile double t; | ||||
| 		glm::detail::int32 hx, hy, ix, iy; | ||||
| 		glm::detail::uint32 lx, ly; | ||||
|  | ||||
| 		GLM_EXTRACT_WORDS(hx, lx, x); | ||||
| 		GLM_EXTRACT_WORDS(hy, ly, y); | ||||
| 		ix = hx & 0x7fffffff;             // |x|  | ||||
| 		iy = hy & 0x7fffffff;             // |y|  | ||||
|  | ||||
| 		if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) ||   // x is nan | ||||
| 			((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0))     // y is nan | ||||
| 			return x+y; | ||||
| 		if(x==y) return y;              // x=y, return y | ||||
| 		if((ix|lx)==0) {                        // x == 0  | ||||
| 			GLM_INSERT_WORDS(x, hy & 0x80000000, 1);    // return +-minsubnormal | ||||
| 			t = x*x; | ||||
| 			if(t==x) return t; else return x;   // raise underflow flag  | ||||
| 		} | ||||
| 		if(hx>=0) {                             // x > 0  | ||||
| 			if(hx>hy||((hx==hy)&&(lx>ly))) {    // x > y, x -= ulp  | ||||
| 				if(lx==0) hx -= 1; | ||||
| 				lx -= 1; | ||||
| 			} else {                            // x < y, x += ulp | ||||
| 				lx += 1; | ||||
| 				if(lx==0) hx += 1; | ||||
| 			} | ||||
| 		} else {                                // x < 0  | ||||
| 			if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp | ||||
| 				if(lx==0) hx -= 1; | ||||
| 				lx -= 1; | ||||
| 			} else {                            // x > y, x += ulp | ||||
| 				lx += 1; | ||||
| 				if(lx==0) hx += 1; | ||||
| 			} | ||||
| 		} | ||||
| 		hy = hx&0x7ff00000; | ||||
| 		if(hy>=0x7ff00000) return x+x;  // overflow | ||||
| 		if(hy<0x00100000) {             // underflow | ||||
| 			t = x*x; | ||||
| 			if(t!=x) {          // raise underflow flag | ||||
| 				GLM_INSERT_WORDS(y,hx,lx); | ||||
| 				return y; | ||||
| 			} | ||||
| 		} | ||||
| 		GLM_INSERT_WORDS(x,hx,lx); | ||||
| 		return x; | ||||
| 	} | ||||
| }//namespace detail | ||||
| }//namespace glm | ||||
|  | ||||
| #if(GLM_COMPILER & GLM_COMPILER_VC) | ||||
| #	pragma warning(pop) | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER float next_float(float const & x) | ||||
| 	{ | ||||
| #		if GLM_HAS_CXX11_STL | ||||
| 			return std::nextafter(x, std::numeric_limits<float>::max()); | ||||
| #		elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) | ||||
| 			return detail::nextafterf(x, FLT_MAX); | ||||
| #		elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) | ||||
| 			return __builtin_nextafterf(x, FLT_MAX); | ||||
| #		else | ||||
| 			return nextafterf(x, FLT_MAX); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template <> | ||||
| 	GLM_FUNC_QUALIFIER double next_float(double const & x) | ||||
| 	{ | ||||
| #		if GLM_HAS_CXX11_STL | ||||
| 			return std::nextafter(x, std::numeric_limits<double>::max()); | ||||
| #		elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) | ||||
| 			return detail::nextafter(x, std::numeric_limits<double>::max()); | ||||
| #		elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) | ||||
| 			return __builtin_nextafter(x, FLT_MAX); | ||||
| #		else | ||||
| 			return nextafter(x, DBL_MAX); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template<typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		vecType<T, P> Result(uninitialize); | ||||
| 		for(length_t i = 0, n = Result.length(); i < n; ++i) | ||||
| 			Result[i] = next_float(x[i]); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER float prev_float(float const & x) | ||||
| 	{ | ||||
| #		if GLM_HAS_CXX11_STL | ||||
| 			return std::nextafter(x, std::numeric_limits<float>::min()); | ||||
| #		elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) | ||||
| 			return detail::nextafterf(x, FLT_MIN); | ||||
| #		elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) | ||||
| 			return __builtin_nextafterf(x, FLT_MIN); | ||||
| #		else | ||||
| 			return nextafterf(x, FLT_MIN); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	GLM_FUNC_QUALIFIER double prev_float(double const & x) | ||||
| 	{ | ||||
| #		if GLM_HAS_CXX11_STL | ||||
| 			return std::nextafter(x, std::numeric_limits<double>::min()); | ||||
| #		elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) | ||||
| 			return _nextafter(x, DBL_MIN); | ||||
| #		elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) | ||||
| 			return __builtin_nextafter(x, DBL_MIN); | ||||
| #		else | ||||
| 			return nextafter(x, DBL_MIN); | ||||
| #		endif | ||||
| 	} | ||||
|  | ||||
| 	template<typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) | ||||
| 	{ | ||||
| 		vecType<T, P> Result(uninitialize); | ||||
| 		for(length_t i = 0, n = Result.length(); i < n; ++i) | ||||
| 			Result[i] = prev_float(x[i]); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) | ||||
| 	{ | ||||
| 		T temp = x; | ||||
| 		for(uint i = 0; i < ulps; ++i) | ||||
| 			temp = next_float(temp); | ||||
| 		return temp; | ||||
| 	} | ||||
|  | ||||
| 	template<typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) | ||||
| 	{ | ||||
| 		vecType<T, P> Result(uninitialize); | ||||
| 		for(length_t i = 0, n = Result.length(); i < n; ++i) | ||||
| 			Result[i] = next_float(x[i], ulps[i]); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) | ||||
| 	{ | ||||
| 		T temp = x; | ||||
| 		for(uint i = 0; i < ulps; ++i) | ||||
| 			temp = prev_float(temp); | ||||
| 		return temp; | ||||
| 	} | ||||
|  | ||||
| 	template<typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) | ||||
| 	{ | ||||
| 		vecType<T, P> Result(uninitialize); | ||||
| 		for(length_t i = 0, n = Result.length(); i < n; ++i) | ||||
| 			Result[i] = prev_float(x[i], ulps[i]); | ||||
| 		return Result; | ||||
| 	} | ||||
|  | ||||
| 	template <typename T> | ||||
| 	GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) | ||||
| 	{ | ||||
| 		uint ulp = 0; | ||||
|  | ||||
| 		if(x < y) | ||||
| 		{ | ||||
| 			T temp = x; | ||||
| 			while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) | ||||
| 			{ | ||||
| 				++ulp; | ||||
| 				temp = next_float(temp); | ||||
| 			} | ||||
| 		} | ||||
| 		else if(y < x) | ||||
| 		{ | ||||
| 			T temp = y; | ||||
| 			while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) | ||||
| 			{ | ||||
| 				++ulp; | ||||
| 				temp = next_float(temp); | ||||
| 			} | ||||
| 		} | ||||
| 		else // == | ||||
| 		{ | ||||
|  | ||||
| 		} | ||||
|  | ||||
| 		return ulp; | ||||
| 	} | ||||
|  | ||||
| 	template<typename T, precision P, template<typename, precision> class vecType> | ||||
| 	GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) | ||||
| 	{ | ||||
| 		vecType<uint, P> Result(uninitialize); | ||||
| 		for(length_t i = 0, n = Result.length(); i < n; ++i) | ||||
| 			Result[i] = float_distance(x[i], y[i]); | ||||
| 		return Result; | ||||
| 	} | ||||
| }//namespace glm | ||||
							
								
								
									
										164
									
								
								lib/glm/gtc/vec1.hpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										164
									
								
								lib/glm/gtc/vec1.hpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,164 @@ | ||||
| /// @ref gtc_vec1 | ||||
| /// @file glm/gtc/vec1.hpp | ||||
| /// | ||||
| /// @see core (dependence) | ||||
| /// | ||||
| /// @defgroup gtc_vec1 GLM_GTC_vec1 | ||||
| /// @ingroup gtc | ||||
| ///  | ||||
| /// @brief Add vec1, ivec1, uvec1 and bvec1 types. | ||||
| /// <glm/gtc/vec1.hpp> need to be included to use these functionalities. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| // Dependency: | ||||
| #include "../glm.hpp" | ||||
| #include "../detail/type_vec1.hpp" | ||||
|  | ||||
| #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) | ||||
| #	pragma message("GLM: GLM_GTC_vec1 extension included") | ||||
| #endif | ||||
|  | ||||
| namespace glm | ||||
| { | ||||
| 	/// 1 component vector of high precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_vec1_t			highp_vec1; | ||||
|  | ||||
| 	/// 1 component vector of medium precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef mediump_vec1_t			mediump_vec1; | ||||
|  | ||||
| 	/// 1 component vector of low precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef lowp_vec1_t				lowp_vec1; | ||||
|  | ||||
| 	/// 1 component vector of high precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_dvec1_t			highp_dvec1; | ||||
|  | ||||
| 	/// 1 component vector of medium precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef mediump_dvec1_t			mediump_dvec1; | ||||
|  | ||||
| 	/// 1 component vector of low precision floating-point numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef lowp_dvec1_t			lowp_dvec1; | ||||
|  | ||||
| 	/// 1 component vector of high precision signed integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_ivec1_t			highp_ivec1; | ||||
|  | ||||
| 	/// 1 component vector of medium precision signed integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef mediump_ivec1_t			mediump_ivec1; | ||||
|  | ||||
| 	/// 1 component vector of low precision signed integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef lowp_ivec1_t			lowp_ivec1; | ||||
|  | ||||
| 	/// 1 component vector of high precision unsigned integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_uvec1_t			highp_uvec1; | ||||
|  | ||||
| 	/// 1 component vector of medium precision unsigned integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef mediump_uvec1_t			mediump_uvec1; | ||||
|  | ||||
| 	/// 1 component vector of low precision unsigned integer numbers.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef lowp_uvec1_t			lowp_uvec1; | ||||
|  | ||||
| 	/// 1 component vector of high precision boolean.  | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_bvec1_t			highp_bvec1; | ||||
|  | ||||
| 	/// 1 component vector of medium precision boolean. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef mediump_bvec1_t			mediump_bvec1; | ||||
|  | ||||
| 	/// 1 component vector of low precision boolean. | ||||
| 	/// There is no guarantee on the actual precision. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef lowp_bvec1_t			lowp_bvec1; | ||||
|  | ||||
| 	////////////////////////// | ||||
| 	// vec1 definition | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_BOOL)) | ||||
| 	typedef highp_bvec1				bvec1; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) | ||||
| 	typedef mediump_bvec1			bvec1; | ||||
| #elif(defined(GLM_PRECISION_LOWP_BOOL)) | ||||
| 	typedef lowp_bvec1				bvec1; | ||||
| #else | ||||
| 	/// 1 component vector of boolean. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_bvec1				bvec1; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_FLOAT)) | ||||
| 	typedef highp_vec1				vec1; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) | ||||
| 	typedef mediump_vec1			vec1; | ||||
| #elif(defined(GLM_PRECISION_LOWP_FLOAT)) | ||||
| 	typedef lowp_vec1				vec1; | ||||
| #else | ||||
| 	/// 1 component vector of floating-point numbers. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_vec1				vec1; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_DOUBLE)) | ||||
| 	typedef highp_dvec1				dvec1; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) | ||||
| 	typedef mediump_dvec1			dvec1; | ||||
| #elif(defined(GLM_PRECISION_LOWP_DOUBLE)) | ||||
| 	typedef lowp_dvec1				dvec1; | ||||
| #else | ||||
| 	/// 1 component vector of floating-point numbers. | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_dvec1				dvec1; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_INT)) | ||||
| 	typedef highp_ivec1			ivec1; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_INT)) | ||||
| 	typedef mediump_ivec1		ivec1; | ||||
| #elif(defined(GLM_PRECISION_LOWP_INT)) | ||||
| 	typedef lowp_ivec1			ivec1; | ||||
| #else | ||||
| 	/// 1 component vector of signed integer numbers.  | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_ivec1			ivec1; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| #if(defined(GLM_PRECISION_HIGHP_UINT)) | ||||
| 	typedef highp_uvec1			uvec1; | ||||
| #elif(defined(GLM_PRECISION_MEDIUMP_UINT)) | ||||
| 	typedef mediump_uvec1		uvec1; | ||||
| #elif(defined(GLM_PRECISION_LOWP_UINT)) | ||||
| 	typedef lowp_uvec1			uvec1; | ||||
| #else | ||||
| 	/// 1 component vector of unsigned integer numbers.  | ||||
| 	/// @see gtc_vec1 extension. | ||||
| 	typedef highp_uvec1			uvec1; | ||||
| #endif//GLM_PRECISION | ||||
|  | ||||
| }// namespace glm | ||||
|  | ||||
| #include "vec1.inl" | ||||
							
								
								
									
										2
									
								
								lib/glm/gtc/vec1.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								lib/glm/gtc/vec1.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,2 @@ | ||||
| /// @ref gtc_vec1 | ||||
| /// @file glm/gtc/vec1.inl | ||||
		Reference in New Issue
	
	Block a user
	 izenynn
					izenynn