initial commit
This commit is contained in:
		
							
								
								
									
										194
									
								
								lib/glm/gtx/matrix_decompose.inl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										194
									
								
								lib/glm/gtx/matrix_decompose.inl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,194 @@ | ||||
| /// @ref gtx_matrix_decompose | ||||
| /// @file glm/gtx/matrix_decompose.inl | ||||
|  | ||||
| namespace glm{ | ||||
| namespace detail | ||||
| { | ||||
| 	/// Make a linear combination of two vectors and return the result. | ||||
| 	// result = (a * ascl) + (b * bscl) | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> combine( | ||||
| 		tvec3<T, P> const & a,  | ||||
| 		tvec3<T, P> const & b, | ||||
| 		T ascl, T bscl) | ||||
| 	{ | ||||
| 		return (a * ascl) + (b * bscl); | ||||
| 	} | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength) | ||||
| 	{ | ||||
| 		return v * desiredLength / length(v); | ||||
| 	} | ||||
| }//namespace detail | ||||
|  | ||||
| 	// Matrix decompose | ||||
| 	// http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp | ||||
| 	// Decomposes the mode matrix to translations,rotation scale components | ||||
|  | ||||
| 	template <typename T, precision P> | ||||
| 	GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective) | ||||
| 	{ | ||||
| 		tmat4x4<T, P> LocalMatrix(ModelMatrix); | ||||
|  | ||||
| 		// Normalize the matrix. | ||||
| 		if(LocalMatrix[3][3] == static_cast<T>(0)) | ||||
| 			return false; | ||||
|  | ||||
| 		for(length_t i = 0; i < 4; ++i) | ||||
| 		for(length_t j = 0; j < 4; ++j) | ||||
| 			LocalMatrix[i][j] /= LocalMatrix[3][3]; | ||||
|  | ||||
| 		// perspectiveMatrix is used to solve for perspective, but it also provides | ||||
| 		// an easy way to test for singularity of the upper 3x3 component. | ||||
| 		tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); | ||||
|  | ||||
| 		for(length_t i = 0; i < 3; i++) | ||||
| 			PerspectiveMatrix[i][3] = static_cast<T>(0); | ||||
| 		PerspectiveMatrix[3][3] = static_cast<T>(1); | ||||
|  | ||||
| 		/// TODO: Fixme! | ||||
| 		if(determinant(PerspectiveMatrix) == static_cast<T>(0)) | ||||
| 			return false; | ||||
|  | ||||
| 		// First, isolate perspective.  This is the messiest. | ||||
| 		if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0)) | ||||
| 		{ | ||||
| 			// rightHandSide is the right hand side of the equation. | ||||
| 			tvec4<T, P> RightHandSide; | ||||
| 			RightHandSide[0] = LocalMatrix[0][3]; | ||||
| 			RightHandSide[1] = LocalMatrix[1][3]; | ||||
| 			RightHandSide[2] = LocalMatrix[2][3]; | ||||
| 			RightHandSide[3] = LocalMatrix[3][3]; | ||||
|  | ||||
| 			// Solve the equation by inverting PerspectiveMatrix and multiplying | ||||
| 			// rightHandSide by the inverse.  (This is the easiest way, not | ||||
| 			// necessarily the best.) | ||||
| 			tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);//   inverse(PerspectiveMatrix, inversePerspectiveMatrix); | ||||
| 			tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);//   transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); | ||||
|  | ||||
| 			Perspective = TransposedInversePerspectiveMatrix * RightHandSide; | ||||
| 			//  v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); | ||||
|  | ||||
| 			// Clear the perspective partition | ||||
| 			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0); | ||||
| 			LocalMatrix[3][3] = static_cast<T>(1); | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			// No perspective. | ||||
| 			Perspective = tvec4<T, P>(0, 0, 0, 1); | ||||
| 		} | ||||
|  | ||||
| 		// Next take care of translation (easy). | ||||
| 		Translation = tvec3<T, P>(LocalMatrix[3]); | ||||
| 		LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); | ||||
|  | ||||
| 		tvec3<T, P> Row[3], Pdum3; | ||||
|  | ||||
| 		// Now get scale and shear. | ||||
| 		for(length_t i = 0; i < 3; ++i) | ||||
| 			for(int j = 0; j < 3; ++j) | ||||
| 				Row[i][j] = LocalMatrix[i][j]; | ||||
|  | ||||
| 		// Compute X scale factor and normalize first row. | ||||
| 		Scale.x = length(Row[0]);// v3Length(Row[0]); | ||||
|  | ||||
| 		Row[0] = detail::scale(Row[0], static_cast<T>(1)); | ||||
|  | ||||
| 		// Compute XY shear factor and make 2nd row orthogonal to 1st. | ||||
| 		Skew.z = dot(Row[0], Row[1]); | ||||
| 		Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z); | ||||
|  | ||||
| 		// Now, compute Y scale and normalize 2nd row. | ||||
| 		Scale.y = length(Row[1]); | ||||
| 		Row[1] = detail::scale(Row[1], static_cast<T>(1)); | ||||
| 		Skew.z /= Scale.y; | ||||
|  | ||||
| 		// Compute XZ and YZ shears, orthogonalize 3rd row. | ||||
| 		Skew.y = glm::dot(Row[0], Row[2]); | ||||
| 		Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y); | ||||
| 		Skew.x = glm::dot(Row[1], Row[2]); | ||||
| 		Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x); | ||||
|  | ||||
| 		// Next, get Z scale and normalize 3rd row. | ||||
| 		Scale.z = length(Row[2]); | ||||
| 		Row[2] = detail::scale(Row[2], static_cast<T>(1)); | ||||
| 		Skew.y /= Scale.z; | ||||
| 		Skew.x /= Scale.z; | ||||
|  | ||||
| 		// At this point, the matrix (in rows[]) is orthonormal. | ||||
| 		// Check for a coordinate system flip.  If the determinant | ||||
| 		// is -1, then negate the matrix and the scaling factors. | ||||
| 		Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); | ||||
| 		if(dot(Row[0], Pdum3) < 0) | ||||
| 		{ | ||||
| 			for(length_t i = 0; i < 3; i++) | ||||
| 			{ | ||||
| 				Scale[i] *= static_cast<T>(-1); | ||||
| 				Row[i] *= static_cast<T>(-1); | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// Now, get the rotations out, as described in the gem. | ||||
|  | ||||
| 		// FIXME - Add the ability to return either quaternions (which are | ||||
| 		// easier to recompose with) or Euler angles (rx, ry, rz), which | ||||
| 		// are easier for authors to deal with. The latter will only be useful | ||||
| 		// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I | ||||
| 		// will leave the Euler angle code here for now. | ||||
|  | ||||
| 		// ret.rotateY = asin(-Row[0][2]); | ||||
| 		// if (cos(ret.rotateY) != 0) { | ||||
| 		//     ret.rotateX = atan2(Row[1][2], Row[2][2]); | ||||
| 		//     ret.rotateZ = atan2(Row[0][1], Row[0][0]); | ||||
| 		// } else { | ||||
| 		//     ret.rotateX = atan2(-Row[2][0], Row[1][1]); | ||||
| 		//     ret.rotateZ = 0; | ||||
| 		// } | ||||
|  | ||||
| 		T s, t, x, y, z, w; | ||||
|  | ||||
| 		t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1); | ||||
|  | ||||
| 		if(t > static_cast<T>(1e-4)) | ||||
| 		{ | ||||
| 			s = static_cast<T>(0.5) / sqrt(t); | ||||
| 			w = static_cast<T>(0.25) / s; | ||||
| 			x = (Row[2][1] - Row[1][2]) * s; | ||||
| 			y = (Row[0][2] - Row[2][0]) * s; | ||||
| 			z = (Row[1][0] - Row[0][1]) * s; | ||||
| 		} | ||||
| 		else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) | ||||
| 		{  | ||||
| 			s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx  | ||||
| 			x = static_cast<T>(0.25) * s; | ||||
| 			y = (Row[0][1] + Row[1][0]) / s;  | ||||
| 			z = (Row[0][2] + Row[2][0]) / s;  | ||||
| 			w = (Row[2][1] - Row[1][2]) / s; | ||||
| 		} | ||||
| 		else if(Row[1][1] > Row[2][2]) | ||||
| 		{  | ||||
| 			s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy | ||||
| 			x = (Row[0][1] + Row[1][0]) / s;  | ||||
| 			y = static_cast<T>(0.25) * s; | ||||
| 			z = (Row[1][2] + Row[2][1]) / s;  | ||||
| 			w = (Row[0][2] - Row[2][0]) / s; | ||||
| 		} | ||||
| 		else | ||||
| 		{  | ||||
| 			s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz | ||||
| 			x = (Row[0][2] + Row[2][0]) / s; | ||||
| 			y = (Row[1][2] + Row[2][1]) / s;  | ||||
| 			z = static_cast<T>(0.25) * s; | ||||
| 			w = (Row[1][0] - Row[0][1]) / s; | ||||
| 		} | ||||
|  | ||||
| 		Orientation.x = x; | ||||
| 		Orientation.y = y; | ||||
| 		Orientation.z = z; | ||||
| 		Orientation.w = w; | ||||
|  | ||||
| 		return true; | ||||
| 	} | ||||
| }//namespace glm | ||||
		Reference in New Issue
	
	Block a user
	 izenynn
					izenynn