183 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /// @ref gtx_integer
 | |
| /// @file glm/gtx/integer.inl
 | |
| 
 | |
| namespace glm
 | |
| {
 | |
| 	// pow
 | |
| 	GLM_FUNC_QUALIFIER int pow(int x, int y)
 | |
| 	{
 | |
| 		if(y == 0)
 | |
| 			return 1;
 | |
| 		int result = x;
 | |
| 		for(int i = 1; i < y; ++i)
 | |
| 			result *= x;
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
 | |
| 	GLM_FUNC_QUALIFIER int sqrt(int x)
 | |
| 	{
 | |
| 		if(x <= 1) return x;
 | |
| 
 | |
| 		int NextTrial = x >> 1;
 | |
| 		int CurrentAnswer;
 | |
| 
 | |
| 		do
 | |
| 		{
 | |
| 			CurrentAnswer = NextTrial;
 | |
| 			NextTrial = (NextTrial + x / NextTrial) >> 1;
 | |
| 		} while(NextTrial < CurrentAnswer);
 | |
| 
 | |
| 		return CurrentAnswer;
 | |
| 	}
 | |
| 
 | |
| // Henry Gordon Dietz: http://aggregate.org/MAGIC/
 | |
| namespace detail
 | |
| {
 | |
| 	GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
 | |
| 	{
 | |
| 		/* 32-bit recursive reduction using SWAR...
 | |
| 		but first step is mapping 2-bit values
 | |
| 		into sum of 2 1-bit values in sneaky way
 | |
| 		*/
 | |
| 		x -= ((x >> 1) & 0x55555555);
 | |
| 		x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
 | |
| 		x = (((x >> 4) + x) & 0x0f0f0f0f);
 | |
| 		x += (x >> 8);
 | |
| 		x += (x >> 16);
 | |
| 		return(x & 0x0000003f);
 | |
| 	}
 | |
| }//namespace detail
 | |
| 
 | |
| 	// Henry Gordon Dietz: http://aggregate.org/MAGIC/
 | |
| /*
 | |
| 	GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
 | |
| 	{
 | |
| 		x |= (x >> 1);
 | |
| 		x |= (x >> 2);
 | |
| 		x |= (x >> 4);
 | |
| 		x |= (x >> 8);
 | |
| 		x |= (x >> 16);
 | |
| 
 | |
| 		return _detail::ones32(x) >> 1;
 | |
| 	}
 | |
| */
 | |
| 	// mod
 | |
| 	GLM_FUNC_QUALIFIER int mod(int x, int y)
 | |
| 	{
 | |
| 		return x - y * (x / y);
 | |
| 	}
 | |
| 
 | |
| 	// factorial (!12 max, integer only)
 | |
| 	template <typename genType>
 | |
| 	GLM_FUNC_QUALIFIER genType factorial(genType const & x)
 | |
| 	{
 | |
| 		genType Temp = x;
 | |
| 		genType Result;
 | |
| 		for(Result = 1; Temp > 1; --Temp)
 | |
| 			Result *= Temp;
 | |
| 		return Result;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec2<T, P> factorial(
 | |
| 		tvec2<T, P> const & x)
 | |
| 	{
 | |
| 		return tvec2<T, P>(
 | |
| 			factorial(x.x),
 | |
| 			factorial(x.y));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> factorial(
 | |
| 		tvec3<T, P> const & x)
 | |
| 	{
 | |
| 		return tvec3<T, P>(
 | |
| 			factorial(x.x),
 | |
| 			factorial(x.y),
 | |
| 			factorial(x.z));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec4<T, P> factorial(
 | |
| 		tvec4<T, P> const & x)
 | |
| 	{
 | |
| 		return tvec4<T, P>(
 | |
| 			factorial(x.x),
 | |
| 			factorial(x.y),
 | |
| 			factorial(x.z),
 | |
| 			factorial(x.w));
 | |
| 	}
 | |
| 
 | |
| 	GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
 | |
| 	{
 | |
| 		uint result = x;
 | |
| 		for(uint i = 1; i < y; ++i)
 | |
| 			result *= x;
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	GLM_FUNC_QUALIFIER uint sqrt(uint x)
 | |
| 	{
 | |
| 		if(x <= 1) return x;
 | |
| 
 | |
| 		uint NextTrial = x >> 1;
 | |
| 		uint CurrentAnswer;
 | |
| 
 | |
| 		do
 | |
| 		{
 | |
| 			CurrentAnswer = NextTrial;
 | |
| 			NextTrial = (NextTrial + x / NextTrial) >> 1;
 | |
| 		} while(NextTrial < CurrentAnswer);
 | |
| 
 | |
| 		return CurrentAnswer;
 | |
| 	}
 | |
| 
 | |
| 	GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
 | |
| 	{
 | |
| 		return x - y * (x / y);
 | |
| 	}
 | |
| 
 | |
| #if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
 | |
| 
 | |
| 	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
 | |
| 	{
 | |
| 		return 31u - findMSB(x);
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 
 | |
| 	// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
 | |
| 	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
 | |
| 	{
 | |
| 		int y, m, n;
 | |
| 
 | |
| 		y = -int(x >> 16);      // If left half of x is 0,
 | |
| 		m = (y >> 16) & 16;  // set n = 16.  If left half
 | |
| 		n = 16 - m;          // is nonzero, set n = 0 and
 | |
| 		x = x >> m;          // shift x right 16.
 | |
| 							// Now x is of the form 0000xxxx.
 | |
| 		y = x - 0x100;       // If positions 8-15 are 0,
 | |
| 		m = (y >> 16) & 8;   // add 8 to n and shift x left 8.
 | |
| 		n = n + m;
 | |
| 		x = x << m;
 | |
| 
 | |
| 		y = x - 0x1000;      // If positions 12-15 are 0,
 | |
| 		m = (y >> 16) & 4;   // add 4 to n and shift x left 4.
 | |
| 		n = n + m;
 | |
| 		x = x << m;
 | |
| 
 | |
| 		y = x - 0x4000;      // If positions 14-15 are 0,
 | |
| 		m = (y >> 16) & 2;   // add 2 to n and shift x left 2.
 | |
| 		n = n + m;
 | |
| 		x = x << m;
 | |
| 
 | |
| 		y = x >> 14;         // Set y = 0, 1, 2, or 3.
 | |
| 		m = y & ~(y >> 1);   // Set m = 0, 1, 2, or 2 resp.
 | |
| 		return unsigned(n + 2 - m);
 | |
| 	}
 | |
| 
 | |
| #endif//(GLM_COMPILER)
 | |
| 
 | |
| }//namespace glm
 |