195 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /// @ref gtx_matrix_decompose
 | |
| /// @file glm/gtx/matrix_decompose.inl
 | |
| 
 | |
| namespace glm{
 | |
| namespace detail
 | |
| {
 | |
| 	/// Make a linear combination of two vectors and return the result.
 | |
| 	// result = (a * ascl) + (b * bscl)
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> combine(
 | |
| 		tvec3<T, P> const & a, 
 | |
| 		tvec3<T, P> const & b,
 | |
| 		T ascl, T bscl)
 | |
| 	{
 | |
| 		return (a * ascl) + (b * bscl);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength)
 | |
| 	{
 | |
| 		return v * desiredLength / length(v);
 | |
| 	}
 | |
| }//namespace detail
 | |
| 
 | |
| 	// Matrix decompose
 | |
| 	// http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
 | |
| 	// Decomposes the mode matrix to translations,rotation scale components
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective)
 | |
| 	{
 | |
| 		tmat4x4<T, P> LocalMatrix(ModelMatrix);
 | |
| 
 | |
| 		// Normalize the matrix.
 | |
| 		if(LocalMatrix[3][3] == static_cast<T>(0))
 | |
| 			return false;
 | |
| 
 | |
| 		for(length_t i = 0; i < 4; ++i)
 | |
| 		for(length_t j = 0; j < 4; ++j)
 | |
| 			LocalMatrix[i][j] /= LocalMatrix[3][3];
 | |
| 
 | |
| 		// perspectiveMatrix is used to solve for perspective, but it also provides
 | |
| 		// an easy way to test for singularity of the upper 3x3 component.
 | |
| 		tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
 | |
| 
 | |
| 		for(length_t i = 0; i < 3; i++)
 | |
| 			PerspectiveMatrix[i][3] = static_cast<T>(0);
 | |
| 		PerspectiveMatrix[3][3] = static_cast<T>(1);
 | |
| 
 | |
| 		/// TODO: Fixme!
 | |
| 		if(determinant(PerspectiveMatrix) == static_cast<T>(0))
 | |
| 			return false;
 | |
| 
 | |
| 		// First, isolate perspective.  This is the messiest.
 | |
| 		if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0))
 | |
| 		{
 | |
| 			// rightHandSide is the right hand side of the equation.
 | |
| 			tvec4<T, P> RightHandSide;
 | |
| 			RightHandSide[0] = LocalMatrix[0][3];
 | |
| 			RightHandSide[1] = LocalMatrix[1][3];
 | |
| 			RightHandSide[2] = LocalMatrix[2][3];
 | |
| 			RightHandSide[3] = LocalMatrix[3][3];
 | |
| 
 | |
| 			// Solve the equation by inverting PerspectiveMatrix and multiplying
 | |
| 			// rightHandSide by the inverse.  (This is the easiest way, not
 | |
| 			// necessarily the best.)
 | |
| 			tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);//   inverse(PerspectiveMatrix, inversePerspectiveMatrix);
 | |
| 			tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);//   transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
 | |
| 
 | |
| 			Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
 | |
| 			//  v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
 | |
| 
 | |
| 			// Clear the perspective partition
 | |
| 			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0);
 | |
| 			LocalMatrix[3][3] = static_cast<T>(1);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// No perspective.
 | |
| 			Perspective = tvec4<T, P>(0, 0, 0, 1);
 | |
| 		}
 | |
| 
 | |
| 		// Next take care of translation (easy).
 | |
| 		Translation = tvec3<T, P>(LocalMatrix[3]);
 | |
| 		LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
 | |
| 
 | |
| 		tvec3<T, P> Row[3], Pdum3;
 | |
| 
 | |
| 		// Now get scale and shear.
 | |
| 		for(length_t i = 0; i < 3; ++i)
 | |
| 			for(int j = 0; j < 3; ++j)
 | |
| 				Row[i][j] = LocalMatrix[i][j];
 | |
| 
 | |
| 		// Compute X scale factor and normalize first row.
 | |
| 		Scale.x = length(Row[0]);// v3Length(Row[0]);
 | |
| 
 | |
| 		Row[0] = detail::scale(Row[0], static_cast<T>(1));
 | |
| 
 | |
| 		// Compute XY shear factor and make 2nd row orthogonal to 1st.
 | |
| 		Skew.z = dot(Row[0], Row[1]);
 | |
| 		Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
 | |
| 
 | |
| 		// Now, compute Y scale and normalize 2nd row.
 | |
| 		Scale.y = length(Row[1]);
 | |
| 		Row[1] = detail::scale(Row[1], static_cast<T>(1));
 | |
| 		Skew.z /= Scale.y;
 | |
| 
 | |
| 		// Compute XZ and YZ shears, orthogonalize 3rd row.
 | |
| 		Skew.y = glm::dot(Row[0], Row[2]);
 | |
| 		Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
 | |
| 		Skew.x = glm::dot(Row[1], Row[2]);
 | |
| 		Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
 | |
| 
 | |
| 		// Next, get Z scale and normalize 3rd row.
 | |
| 		Scale.z = length(Row[2]);
 | |
| 		Row[2] = detail::scale(Row[2], static_cast<T>(1));
 | |
| 		Skew.y /= Scale.z;
 | |
| 		Skew.x /= Scale.z;
 | |
| 
 | |
| 		// At this point, the matrix (in rows[]) is orthonormal.
 | |
| 		// Check for a coordinate system flip.  If the determinant
 | |
| 		// is -1, then negate the matrix and the scaling factors.
 | |
| 		Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
 | |
| 		if(dot(Row[0], Pdum3) < 0)
 | |
| 		{
 | |
| 			for(length_t i = 0; i < 3; i++)
 | |
| 			{
 | |
| 				Scale[i] *= static_cast<T>(-1);
 | |
| 				Row[i] *= static_cast<T>(-1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Now, get the rotations out, as described in the gem.
 | |
| 
 | |
| 		// FIXME - Add the ability to return either quaternions (which are
 | |
| 		// easier to recompose with) or Euler angles (rx, ry, rz), which
 | |
| 		// are easier for authors to deal with. The latter will only be useful
 | |
| 		// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
 | |
| 		// will leave the Euler angle code here for now.
 | |
| 
 | |
| 		// ret.rotateY = asin(-Row[0][2]);
 | |
| 		// if (cos(ret.rotateY) != 0) {
 | |
| 		//     ret.rotateX = atan2(Row[1][2], Row[2][2]);
 | |
| 		//     ret.rotateZ = atan2(Row[0][1], Row[0][0]);
 | |
| 		// } else {
 | |
| 		//     ret.rotateX = atan2(-Row[2][0], Row[1][1]);
 | |
| 		//     ret.rotateZ = 0;
 | |
| 		// }
 | |
| 
 | |
| 		T s, t, x, y, z, w;
 | |
| 
 | |
| 		t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1);
 | |
| 
 | |
| 		if(t > static_cast<T>(1e-4))
 | |
| 		{
 | |
| 			s = static_cast<T>(0.5) / sqrt(t);
 | |
| 			w = static_cast<T>(0.25) / s;
 | |
| 			x = (Row[2][1] - Row[1][2]) * s;
 | |
| 			y = (Row[0][2] - Row[2][0]) * s;
 | |
| 			z = (Row[1][0] - Row[0][1]) * s;
 | |
| 		}
 | |
| 		else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
 | |
| 		{ 
 | |
| 			s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx 
 | |
| 			x = static_cast<T>(0.25) * s;
 | |
| 			y = (Row[0][1] + Row[1][0]) / s; 
 | |
| 			z = (Row[0][2] + Row[2][0]) / s; 
 | |
| 			w = (Row[2][1] - Row[1][2]) / s;
 | |
| 		}
 | |
| 		else if(Row[1][1] > Row[2][2])
 | |
| 		{ 
 | |
| 			s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy
 | |
| 			x = (Row[0][1] + Row[1][0]) / s; 
 | |
| 			y = static_cast<T>(0.25) * s;
 | |
| 			z = (Row[1][2] + Row[2][1]) / s; 
 | |
| 			w = (Row[0][2] - Row[2][0]) / s;
 | |
| 		}
 | |
| 		else
 | |
| 		{ 
 | |
| 			s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz
 | |
| 			x = (Row[0][2] + Row[2][0]) / s;
 | |
| 			y = (Row[1][2] + Row[2][1]) / s; 
 | |
| 			z = static_cast<T>(0.25) * s;
 | |
| 			w = (Row[1][0] - Row[0][1]) / s;
 | |
| 		}
 | |
| 
 | |
| 		Orientation.x = x;
 | |
| 		Orientation.y = y;
 | |
| 		Orientation.z = z;
 | |
| 		Orientation.w = w;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| }//namespace glm
 |